
 1

BENDING FREQUENCIES OF BEAMS, RODS, AND PIPES        Revision K 
 
By Tom Irvine 
Email:  tomirvine@aol.com 
 
June 24, 2004 
 
Introduction 
 

The fundamental frequencies for typical beam configurations are given in Table 1.  
Higher frequencies are given for selected configurations. 
 
 

Table 1.  Bending Frequencies 
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where 
 
  E  is the modulus of elasticity. 
  I  is the area moment of inertia. 

L  is the length. 
ρ  is the mass density (mass/length). 

 
The derivations and examples are given in the appendices per Table 2. 
 
Table 2.   Table of Contents 

 
Appendix Title Mass Solution 

A Cantilever Beam I 
 

End mass.  Beam mass 
is negligible 

Approximate 

B Cantilever Beam II 
 

Beam mass only. Approximate  

C Cantilever Beam III 
 

Both beam mass and 
the end mass are 
significant 

Approximate 

D Cantilever Beam IV Beam mass only. Eigenvalue 

E Beam Simply-
Supported at Both 
Ends I 

Center mass.  Beam 
mass is negligible. 

Approximate 

F Beam Simply-
Supported at Both 
Ends II 

Beam mass only Eigenvalue  

G Free-Free Beam Beam mass only Eigenvalue 

H Steel Pipe example, 
Simply Supported 
and Fixed-Fixed 
Cases 

Beam mass only Approximate 

I Rocket Vehicle 
Example, Free-free 
Beam 

Beam mass only Approximate 

J Fixed-Fixed Beam Beam mass only Eigenvalue 

 
 
 
Reference 
 
1. T. Irvine, Application of the Newton-Raphson Method to Vibration Problems, 

Vibrationdata Publications, 1999. 
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APPENDIX G 
 
 
Free-Free Beam 
 
Consider a uniform beam with free-free boundary conditions. 
 
 
 
 
 
 
 
 
Figure G-1. 
 
The governing differential equation is  
 

− =EI
y

x

y

t

∂

∂
ρ

∂

∂

4

4

2

2                                                                                  (G-1) 

 
Note that this equation neglects shear deformation and rotary inertia. 
 
The following equation is obtain using the method in Appendix D 
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The proposed solution is 
 

( ) ( ) ( ) ( )Y x a x a x a x a x( ) sinh cosh sin cos= + + +1 2 3 4β β β β                                 (G-3) 
 

( ) ( ) ( ) ( )dY x
dx

a x a x a x a x
( )

cosh sinh cos sin= + + −1 2 3 4β β β β β β β β                       (G-4)                               

 

( ) ( ) ( ) ( )d Y x

dx
a x a x a x a x

2

2 1
2

2
2

3
2

4
2( )

sinh cosh sin cos= + − −β β β β β β β β          (G-5)                           

 

( ) ( ) ( ) ( )xsin3
4axcos3

3axsinh3
2axcosh3

1a
3dx

)x(Y3d ββ+ββ−ββ+ββ=            (G-6) 

Apply the boundary conditions. 
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0
0x

2dx

Y2d =
=

        (zero bending moment)                                   (G-7)                    

 
 

04a2a =−                                                                                  (G-8) 
 

2a4a =                                                                                       (G-9) 
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=

       (zero shear force)                                             (G-10) 

 
 

03a1a =−                                                                                  (G-11) 
 

1a3a =                                                                                        (G-12) 
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( ) ( )[ ] ( ) ( )[ ] 0LcosLcosh2aLsinLsinh1a =β−β+β−β                                    (G-16) 
 
 
 

d Y
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3

3 0
=

=        (zero shear force)                                           (G-17) 

 
 

( ) ( )[ ] ( ) ( )[ ] 0LsinLsinh2aLcosLcosh1a =β+β+β−β                               (G-18) 
                              

 
Equation (G-16) and (G-18) can be arranged in matrix form. 
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LsinLsinhLcosLcosh

LcosLcoshLsinLsinh
                              (G-19) 

 
 
 
Set the determinant equal to zero. 

 
 

( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ] 02LcosLcoshLsinLsinhLsinLsinh =β−β−β+ββ−β                   (G-20) 
 
 

( ) ( ) ( ) ( ) ( ) ( ) 0L2cosLcosLcosh2L2coshL2sinL2sinh =β−ββ+β−β−β                   (G-21) 
 
 

( ) ( ) 02LcosLcosh2 =−ββ+                                                             (G-22) 
 

( ) ( ) 01LcosLcosh =−ββ                                                                (G-23) 
 

The roots can be found via the Newton-Raphson method, Reference 1.  The first root is 
 

 
4.73004L =β                                                                           (G-24) 
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The second root is 
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The third root is 
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Equation (G-18) can be expressed as 
 
 

( ) ( )
( ) ( ) 








β+β
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LsinLsinh

LcosLcosh
1a2a                                                               (G-38) 

 
 
Recall 
 

2a4a =                                                                                       (G-39) 
 

1a3a =                                                                                        (G-40) 
 
 

The displacement mode shape is thus 
 
 

( ) ( )[ ] ( ) ( )[ ]xcosxcosh2axsinxsinh1a)x(Y β+β+β+β=                                             (G-41) 
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( ) ( ) ( ) ( )[ ]









β+β







β+β
β+β−+β+β= xcosxcosh
LsinLsinh

LcosLcoshxsinxsinh1a)x(Y       (G-42) 

 
 



 38

An alternate form is 
 

( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]{ }xcosxcoshLcosLcoshxsinxsinhLsinLsinh1a�
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The first derivative is 
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The second derivative is 
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