By Tom Irvine Email: tomirvine@aol.com

June 24, 2004

Introduction

The fundamental frequencies for typical beam configurations are given in Table 1. Higher frequencies are given for selected configurations.

Table 1. Bending Frequencies			
Configuration	Frequency (Hz)		
Cantilever	$f_1 = \frac{1}{2\pi} \left[\frac{3.5156}{L^2} \right] \sqrt{\frac{EI}{\rho}}$		
	$f_2 = 6.268 f_1$		
	$f_3 = 17.456 f_1$		
Cantilever with End Mass m	$f_{1} = \frac{1}{2\pi} \sqrt{\frac{3EI}{(0.2235 \rho L + m) L^{3}}}$		
Simply-Supported at both Ends (Pinned-Pinned)	$f_n = \left[\frac{1}{2\pi}\right] \left[\frac{n\pi}{L}\right]^2 \sqrt{\frac{EI}{\rho}}$, $n = 1, 2, 3,$		
Free-Free	$f_1 = \frac{1}{2\pi} \begin{bmatrix} 22/3/3 \\ I^2 \end{bmatrix} \sqrt{EI}$		
	$f_2 = 2.757 f_1$ $f_3 = 5.404 f_1$		
Fixed-Fixed	Same as Free-Free		
Fixed - Pinned	$f_{1} = \frac{1}{2\pi} \left[\frac{15.418}{L^2} \right] \sqrt{\frac{EI}{\rho}}$		

where

- E is the modulus of elasticity.
- I is the area moment of inertia.
- L is the length.
- ρ is the mass density (mass/length).

The derivations and examples are given in the appendices per Table 2.

Table 2. Table of Contents			
Appendix	Title	Mass	Solution
A	Cantilever Beam I	End mass. Beam mass is negligible	Approximate
В	Cantilever Beam II	Beam mass only.	Approximate
С	Cantilever Beam III	Both beam mass and the end mass are significant	Approximate
D	Cantilever Beam IV	Beam mass only.	Eigenvalue
E	Beam Simply- Supported at Both Ends I	Center mass. Beam mass is negligible.	Approximate
F	Beam Simply- Supported at Both Ends II	Beam mass only	Eigenvalue
G	(Free-Free Beam)	Beam mass only	Eigenvalue
Н	Steel Pipe example, Simply Supported and Fixed-Fixed Cases	Beam mass only	Approximate
I	Rocket Vehicle Example, Free-free Beam	Beam mass only	Approximate
J	Fixed-Fixed Beam	Beam mass only	Eigenvalue

<u>Reference</u>

1. T. Irvine, Application of the Newton-Raphson Method to Vibration Problems, Vibrationdata Publications, 1999.

APPENDIX G

Free-Free Beam

Consider a uniform beam with free-free boundary conditions.

Figure G-1.

The governing differential equation is

$$-\operatorname{EI}\frac{\partial^4 y}{\partial x^4} = \rho \frac{\partial^2 y}{\partial t^2}$$
(G-1)

Note that this equation neglects shear deformation and rotary inertia.

The following equation is obtain using the method in Appendix D

$$\frac{d^4}{dx^4} Y(x) - c^2 \left\{ \frac{\rho}{EI} \right\} Y(x) = 0$$
(G-2)

The proposed solution is

$$Y(x) = a_1 \sinh(\beta x) + a_2 \cosh(\beta x) + a_3 \sin(\beta x) + a_4 \cos(\beta x)$$
(G-3)

$$\frac{dY(x)}{dx} = a_1\beta\cosh(\beta x) + a_2\beta\sinh(\beta x) + a_3\beta\cos(\beta x) - a_4\beta\sin(\beta x)$$
(G-4)

$$\frac{d^2 Y(x)}{dx^2} = a_1 \beta^2 \sinh(\beta x) + a_2 \beta^2 \cosh(\beta x) - a_3 \beta^2 \sin(\beta x) - a_4 \beta^2 \cos(\beta x)$$
(G-5)

$$\frac{d^{3}Y(x)}{dx^{3}} = a_{1}\beta^{3}\cosh(\beta x) + a_{2}\beta^{3}\sinh(\beta x) - a_{3}\beta^{3}\cos(\beta x) + a_{4}\beta^{3}\sin(\beta x)$$
(G-6)

Apply the boundary conditions.

$$\frac{d^2 Y}{dx^2}\Big|_{x=0} = 0 \qquad (\text{zero bending moment}) \tag{G-7}$$

$$a_2 - a_4 = 0$$
 (G-8)

$$a_4 = a_2$$
 (G-9)

$$\frac{d^{3}Y}{dx^{3}}\Big|_{x=0} = 0 \quad (\text{zero shear force}) \quad (G-10)$$

$$a_1 - a_3 = 0$$
 (G-11)

$$a_3 = a_1$$
 (G-12)

$$\frac{d^2 Y(x)}{dx^2} = a_1 \beta^2 [\sinh(\beta x) - \sin(\beta x)] + a_2 \beta^2 [\cosh(\beta x) - \cos(\beta x)]$$
(G-13)

$$\frac{d^3 Y(x)}{dx^3} = a_1 \beta^3 [\cosh(\beta x) - \cos(\beta x)] + a_2 \beta^3 [\sinh(\beta x) + \sin(\beta x)]$$
(G-14)

$$\frac{d^2 Y}{dx^2}\bigg|_{x=L} = 0 \qquad (\text{zero bending moment}) \tag{G-15}$$

$$a_1[\sinh(\beta L) - \sin(\beta L)] + a_2[\cosh(\beta L) - \cos(\beta L)] = 0$$
(G-16)

$$\frac{d^{3}Y}{dx^{3}}\bigg|_{x=L} = 0 \qquad (\text{zero shear force}) \qquad (G-17)$$

$$a_1[\cosh(\beta L) - \cos(\beta L)] + a_2[\sinh(\beta L) + \sin(\beta L)] = 0$$
(G-18)

Equation (G-16) and (G-18) can be arranged in matrix form.

$$\begin{bmatrix} \sinh(\beta L) - \sin(\beta L) & \cosh(\beta L) - \cos(\beta L) \\ \cosh(\beta L) - \cos(\beta L) & \sinh(\beta L) + \sin(\beta L) \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
(G-19)

Set the determinant equal to zero.

$$[\sinh(\beta L) - \sin(\beta L)] [\sinh(\beta L) + \sin(\beta L)] - [\cosh(\beta L) - \cos(\beta L)]^2 = 0$$
 (G-20)

$$\sinh^{2}(\beta L) - \sin^{2}(\beta L) - \cosh^{2}(\beta L) + 2\cosh(\beta L)\cos(\beta L) - \cos^{2}(\beta L) = 0$$
 (G-21)

$$+2\cosh(\beta L)\cos(\beta L) - 2 = 0 \tag{G-22}$$

$$\cosh(\beta L)\cos(\beta L) - 1 = 0 \tag{G-23}$$

The roots can be found via the Newton-Raphson method, Reference 1. The first root is

$$\beta L = 4.73004$$
 (G-24)

$$\omega_n = \beta_n^2 \sqrt{\frac{\text{EI}}{\rho}}$$
(G-25)

$$\omega_{1} = \left[\frac{4.73004}{L}\right]^{2} \sqrt{\frac{EI}{\rho}}$$
(G-26)

$$\omega_{1} = \left[\frac{22.373}{L^{2}}\right] \sqrt{\frac{EI}{\rho}}$$
(G-27)

The second root is

$$\beta L = 7.85320$$
 (G-28)

$$\omega_{n} = \beta_{n}^{2} \sqrt{\frac{\text{EI}}{\rho}}$$
(G-29)

$$\omega_2 = \left[\frac{7.85320}{L}\right]^2 \sqrt{\frac{EI}{\rho}}$$
(G-30)

$$\omega_2 = \left[\frac{61.673}{L^2}\right] \sqrt{\frac{\text{EI}}{\rho}} \tag{G-31}$$

$$\omega_2 = 2.757 \,\omega_1$$
 (G-32)

The third root is

$$\beta L = 10.9956$$
 (G-33)

$$\omega_n = \beta_n^2 \sqrt{\frac{EI}{\rho}}$$
(G-34)

$$\omega_{3} = \left[\frac{10.9956}{L}\right]^{2} \sqrt{\frac{EI}{\rho}}$$
(G-35)

$$\omega_{3} = \left[\frac{120.903}{L^{2}}\right] \sqrt{\frac{EI}{\rho}}$$
(G-36)

$$\omega_3 = 5.404 \omega_1$$
 (G-37)

Equation (G-18) can be expressed as

$$a_{2} = a_{1} \left[\frac{-\cosh(\beta L) + \cos(\beta L)}{\sinh(\beta L) + \sin(\beta L)} \right]$$
(G-38)

Recall

$$a_4 = a_2$$
 (G-39)

$$a_3 = a_1$$
 (G-40)

The displacement mode shape is thus

$$Y(x) = a_1[\sinh(\beta x) + \sin(\beta x)] + a_2[\cosh(\beta x) + \cos(\beta x)]$$
(G-41)

$$Y(x) = a_1 \left\{ \left[\sinh(\beta x) + \sin(\beta x) \right] + \left[\frac{-\cosh(\beta L) + \cos(\beta L)}{\sinh(\beta L) + \sin(\beta L)} \right] \left[\cosh(\beta x) + \cos(\beta x) \right] \right\}$$
(G-42)

An alternate form is

 $Y(x) = \hat{a}_1\{[\sinh(\beta L) + \sin(\beta L)][\sinh(\beta x) + \sin(\beta x)] + [-\cosh(\beta L) + \cos(\beta L)][\cosh(\beta x) + \cos(\beta x)]\}$

The first derivative is

$$\frac{\mathrm{dy}}{\mathrm{dx}} =$$

 $\hat{a}_1\beta\{[\sinh(\beta L) + \sin(\beta L)][\cosh(\beta x) + \cos(\beta x)] + [-\cosh(\beta L) + \cos(\beta L)][\sinh(\beta x) - \sin(\beta x)]\}$

(G-44)

The second derivative is

$$\frac{d^2y}{dx^2} =$$

 $\hat{a}_1\beta^2 \left\{ \left[\sinh(\beta L) + \sin(\beta L) \right] \left[\sinh(\beta x) - \sin(\beta x) \right] + \left[-\cosh(\beta L) + \cos(\beta L) \right] \left[\cosh(\beta x) - \cos(\beta x) \right] \right\}$

(G-45)