Chime Sets by Site Visitors,
Translate – Right-click anywhere on the page
then click Translate to [Language]
We provide you with easy options for making good
decisions when designing and building tubular-bell wind chimes from tubes,
pipes, or rods. You can build a chime set using the plans detailed below or you
can design a chime set specific to your personality, style, and budget.
A
variety of best practices, patterns and calculators
are provided to accommodate your skill level and
construction resources. Avoid the common mistakes
often found in commercial chimes and you can easily
construct a great sounding set of tubular bell
chimes.
Design of the month: Physics
Class
Nashville Community High School – Nashville, IL
Smiles Tell The Story . . . !
As the Physics Class finishes their section on waves of all sorts for the
2023 year, the instructor, Mr. Calvin O'Rear, used wind chimes as a hands on DIY
wave learning activity. Pictured* below are some amazing accomplishments by class
members. Congratulations Class!
*Permission given to post on the internet.
If you know what you want and just
need dimensions and patterns, see
Quick-Start below.
If you're curious about some of the design
considerations, read on.
To help simplify your visit, the menu has been
organized specific to each section of the chime set
design. You can anticipate just a few decisions before you’re ready to
begin construction.
There is a lot of information here and in the design handbook, but don’t let it overwhelm
you.
Most of the information provides choices for making a
design decision. You can build your first set by using the
DIY Plans below.
How To Make Tubular Bell Wind
Chimes (Step by Step)
DIY Plans,
Videos, Files and How to Handbook Tubular Bell Chimes Design Handbook 5.2 Meg, PDF The Handbook duplicates
the website. Take it with you as a reference when you build the
chime set, also included in the combo pack below.
Chime Build Combo Pack Zip, 12 Meg, Includes the Handbook, 13-calculators, support disk
patterns, sail patterns and chime emulation software.
How to Build Wind Chimes – DIY Plans1.5 Meg, PDF,
A great
sounding set of wind chimes can be built for about $40
depending on the chime set size you select. Choose from four
height selections ranging from 36 to 75 inches (900-1900 mm).
Add your creative touch by altering the material and style used
for the top support disk, striker and wind sail.
DIY
Happy Birthday - Chime Set
1.5 Meg, PDF, Surprise that special person
or occasion with a song played on
a set of chimes you've built. For about $30, materials are available
from your local home improvement store.
Keep the chime set for the next party/occasion or convert
them into a set of hanging wind chimes. See YouTube example
here by
Keith Fields
How to
make wind chimes video using information from this
website
by Steve Ramsey at Woodworking for Mere Mortals
The calculators
require one of the following programs to view and execute:
For PC's, MS Excel TM Viewer
Download it Here (Zip file)
I use the free version of Docs to Go for mobile work: Androids
etc.
Docs To Go
For iPhone
Docs To Go in the Apple store
Calculators are for: Aluminum, Brass, Copper,
Cast Iron, Steel (EMT), Stainless Steel and Titanium
All Musical Notes DIY Chime
Tube Calculator (A4=440) (Zip) (Most common)
Inches Version
Millimeters Version (Use this to select notes
for base A4= 440Hz)MS Excel TM
Special Music
Scales All Musical
Notes DIY Chime Tube Calculator (A4=432) (Zip)
Inches Version
Millimeters Version
(Use this to select notes
for base A4=432Hz)
Support, Striker
and Sail
Patterns Wind Chime
Support Disk and Striker Patterns 5.8Meg PDF,
includes location markers for single point or dual point chime
hang, 3-point or 4-point support disk hang, tube sizes from 1/2
inch
to 2 inch, size for both a circular and a star striker, and
generic patterns.
Wind Chime Designer Software
by Greg Phillips. A well designed freeware called
Wind Chime Designer V2.0,
1997-2006-2020, will emulate a chime for notes between A2 (110
Hz) thru B8 (7,902 Hz) in 82 different scales. It will help you
determine what notes sound pleasant on a chime and what scale to use.
Wind Chime Designer
Instructions PDF Remember -the
loudspeaker connected to your computer has the ability to produce the low notes
from C2 to C4 but a chime may not radiate those sounds.
DIY Calculator includes the following features:
>
Calculates length and hang point for tubes or rods unrestricted at both ends.
> A ratio calculator to predict chime length from a known chime dimension and
frequency. > Look-up tables for standard size tubing
> Look-up table for material properties
> Standard Music Scale
> All dimensions calculated are based on OD, ID in inches or mm and specific material
types.
> OD = outside dimension of tubing (inches or mm), ID = inside dimension of tubing
(inches or mm)
> Material type = aluminum, brass, cast iron, copper, steel (EMT thin-wall conduit),
stainless steel, titanium
> Note selection by frequency in Hz
> The calculator uses nominal values for material properties.
However, if you
know the exact material density and elasticity, you can enter those parameters.
> Read about cautions
here
Caution, these values allow you to get close to the desired note (typically within 1%) but if you desire an exact note,
cut slightly long and grind to the final length, but not usually required for wind
chimes. Manufacturing dimensional tolerances may cause slight inaccuracies in the
actual results, not to mention the effects of poor material handling along with
slight variations in material properties and impurities. If in doubt, cut
slightly long and grind to final values. You can measure some of the frequencies
(not all) for note verification using
software programs listed
here.
Do not use these calculations for an orchestra or a musical setting
unless you are certain they use A=440 Hz. An orchestra or symphony may brighten
slightly and will typically tune for A=442, 43 or 44 The above chart uses A =
440 Hz. Most symphony grade instruments are shipped with A=442 Hz. While orchestra grade chimes typically do not go below the C5 octave,
they are not tuned for the fundamental frequency, which is the basis for all the
calculators on this website. Instead, they tune for the overtones
and depend on the brain's fuzzy logic to perceive the correct note. An orchestra
chime that is tuned for C5 will typically be cut for a length around C2 and then
hand tuned to become a perceived note of C5.
Chime
calculator cell phone app by site visitor Andrew Hughes,
Android Version
Online chime calculatorby site visitor
Larry
Snyder - Suggests a 'cut list' and cost estimate for
the number of raw tubes to be purchased.
- Offers a Support Disk pattern based on the number of chimes
desired.
- Allows for selecting various frequencies of "A4."
- Presents the Solfeggio "Healing" Frequencies.
- Has macros for auto-selection of Major and Natural Minor
scales.
- Shows only the 'interesting stuff' when printed.
What's the difference between a
pipe and a tube; the way it’s measured and its
applied use. Pipes are passageways while tubes are for structural builds like
hand railing, bicycles and lawn chairs. For the purpose of tubular bell chimes we consider them the same. The important
parameters are the outside diameter, the inside diameter and the type of metal.
On the other hand, a rod is a solid metal cylinder that can produce a very
different sound compared to a tube. The DIY calculators on this website can predict the resonant frequency for a tube or a circular rod and their hang
point location. If you want to design and build a chime set using rods rather
than tubes all you have to do is set the inside diameter to zero and enter the
outside diameter and type of metal into the DIY calculator.
If you are trying to decide between using a tube or a rod as the chime element,
one important difference is the sustain time of the musical note. Typically a
rod will have a much longer sustain time and in some environments this maybe
desirable but annoying in others.
Another difference between
tubes and rods is their length for a given note. A rod is shorter than a tube to
strike the same note for the same metal. For example, a 1 inch steel rod for
middle C, (C4) is 26 1/4 inch while it is 32 7/8 inch for a 1 inch steel EMT tube. In
addition to smooth surface metal rods, I have tested
steel rebar and the sound was awesome. Because of the hardness, rebar exhibited
a wonderful sustain time which helped to hold on to the overtones. I did not test
the accuracy of the DIY calculator but I suspect it will be close. I would
suggest selecting your notes based on steel, and while the notes probably will
not be completely accurate, the ratio among the notes should remain the same.
Two additional issues to
consider are the weight and loudness difference. Rods typically have a relative
small diameter offering a smaller radiating surface producing a quieter chime,
but on occasion the longer sustain time can offset the reduced loudness and
sound quite acceptable.
1. Select the number of chimes (typically 3 to 10) for your set
and the
musical notes. It is
helpful to understand the limitations for effective note selection as
discussed in the section on
the bell-like chime.
Keep in mind the physical size for the set. Whether you use pre-calculated
dimensions or a DIY calculator, observe the length for the longest
chime as a guide for overall size. Remember to include extra length for the
wind sail that hangs below the chimes.
Read
this caution.
3. Cut each chime to the length provided by the pre-calculated
table or the DIY calculator. Best to cut slightly long (about 1/8”) to allow
for smoothing and de-burring the ends to final dimensions.
If
you're new to cutting metal and looking for an easy method, I use an
abrasive metal cutting saw blade in a radial arm saw and it works equally
well with a cut-off saw aka chop-saw. The blade pictured right is under
$5.00 at Home Depot. Make certain to use a cutting disk designed for
the type of metal you plan to use. Using the wrong type of abrasive disk can
cause a dangerous explosion The traditional tubing cutter or hacksaw
also works well.
4. Smooth the ends to remove sharp edges and to provide a
professional appearance. Place an old towel or cloth on a table to protect
the chime from scratches. Roll the chime back and forth as you file or sand
the ends smooth. Slightly chamfer or round the outer edge.
Using
a V-block, center the block before drilling by lowering the drill bit to
the bottom of the vee and then clamp the block to the drill table.
How to drill the
support holes without a drill press or V-block: Using card stock or
a manila folder cut a strip about ½” by 8” or so, wrap it around the tube and tape
it so that you now have what looks like a “Cigar Band.” Remove the band and
lay it on a table. Flatten the band so a crease forms at both ends. Example: say that the
instructions ask for a hole 10 ½ inches from the end of the tube. Slide the “Creased Cigar
Band” down the tube to the 10 ½” inch mark. Position one crease at your mark
and then rotate the tube over to the second crease and mark that
location. Now you have drilling marks exactly opposite each other.
6. Deburr the support holes in
preparation for your support line. Using a drill bit larger than the hole,
place the bit on the outside of the hole and rotate by hand. This is
generally enough to chamfer the outside hole.
Outside Before
Deburr
Outside After
Deburr the inside support hole.
First, using a round or half-round file, remove the burr from inside the tube.
Finish the task by using a section of coat hanger wire with a small bend
approximately 105 degrees at the far end, as shown right. Place the wire in a
drill and insert the bent end thru the hole. As you rotate the wire, lightly
pull back on the drill and the bent wire will bend over any inside burr.
Inside Before
Inside After
Thanks to Dennis Offner for a
tip about deburring. An alternate approach for deburring could be the deburring
tools available from the
Cogsdill Tool Company. They manufactures several types of deburring
tools that deburr the outside then collapse to pass through the hole and then
expand to deburr the back side of the hole. Using an electric drill, a set of
chime tubes can be deburred in just a few minutes.
For a long time, my
favorite material has been treated lumber used for decking, although it did need
a weatherproofing sealer. Also, white, or red cedar works well coated with a
weatherproof sealer. The engineered wood for decks makes an excellent
support plate and striker. If you know of someone installing a new deck
using engineered wood, perhaps you can get a few scraps. One board is
expensive and may not be worth the cost, but scraps are useful. Also, a
half-inch thick nylon cutting board (old or new) works well. Some people
will shop flea markets for that special circular disk made of most anything
from metal to plastic plates, etc. In addition, wandering the aisles of Home
Depot, Lowe's, Target, Mendelssohn's and your local drugstore have produced
some surprising circular disk that can be drilled and are long lasting in
the weather.
8. Select the
top support disk cutout
pattern for your specific tubing size and number of chimes in the set.
Download the support disk and striker patterns from the website and just
print the page specific to your tubing size and number of chimes in the set.
You may need to print two copies, one for the support pattern and hole
locations, and one for the striker pattern.
To assist the wind striking all chimes use a fishing spinner for
support. This allows the wind to slightly rotate the chime set. (Thanks to Terry
for the suggestion.)
10. Select and print a pattern for the wind sail from selections
in
Patterns for Wind
Sails/Catchers available on the website, or design your own design.
11. Weather protect the top support disk or ring, the striker and
the sail with a UV protective finish. Decorate the chime tube as desired.
A few suggestions here.
12. Select the
line, cord or chain
for supporting both the chime tube and the top support disk.
13. Select the
style for hanging the chime
tubes, i.e. top aligned, center aligned or bottom aligned. Bottom
aligned is best because it allows the striker to easily contact the bottom
edge of all chimes, the ideal strike location. Top aligned may have a more
aesthetic appeal and on occasion some like center alignment.
Also, you want to keep the
distance between the chimes and the support desk quite short, no matter how
they are aligned.
This is to assist alignment during high winds. If they dangle too far below
to the support plate, they can bump into each other and occasionally get
mixed up with each other. A few inches would be best.
15. Attach the support line or chain to the chime using a
simple jig you can make.
You can use an appropriately sized darning needle for threading line through
the top support holes and tubes during assembly.
17. Hang the striker according to the alignment diagram and
avoid striking exact dead center for any chime. All three locations work
well when you keep the striker away from the center dead zone for the first
overtone. Don't worry about killing the first overtone with center
placement. The first overtone dead zone is very narrow and easily overcome
with a slightly off-center strike.
Always try your local building
supply store. In addition to visiting the hardware section in these
stores investigate tubing used for closet hanging poles, shower
curtain poles, chain link fence rails and post. Yard or garage sales
can yield surprising results, look for a discarded metal swing set,
tubular shelving, etc. With permission look for discarded materials
on constructions sites. Try your local metal recycler; they can
yield very economical rod and tubing.
Online
sources:
Amazon, eBay and the like can surprise you at
times, offering small orders at good prices.
Speedy Metals accepts
orders for small quantities of tubes or rods. (Aluminum, Brass, Cast
Iron, Copper, Steel and Stainless)
Online Metals: 1 inch OD x 0.125 inch wall x 0.75 inch ID
Aluminum Round Tube 6063-T52-Extruded, 60 inches long about $20/each
Amazon, set of five (5 pcs) aluminum tubes, 1 inch diameter
x 60 inches long with a wall thickness of 0.024 inch for $24.
Amazon, 1¼ inch diameter x 72 inch long x .057 inch wall
thickness (1 pcs) bright dipped aluminum, about $31/each
Titanium Joe
(Tubing) Titanium is a silver color, low density and high
strength metal that is highly resistant to corrosion in sea water, aqua regia and
chlorine.
You can use either grade 2 being pure titanium, which is softer and
less popular, or grade 9 (3AL-2.5V), which is the more popular high strength.
The grade 9 numbers represent the percentage of Aluminum and
Vanadium.
The DIY Calculators work equally well for both grades.
Widener
Metals is a small metals distributor supplying pipe, tubing and
other misc. materials. Stocking stainless, aluminum and carbon steel
from 1/8 inch diameter up thru 12 inch diameter with various wall thickness'
from very light to very heavy. No minimum orders, offering material
custom cut to length at no additional charge.
267-583-3772 or info@widenermetals.com
Tanks bells can be crafted from out-of-service
compressed gas/air tanks, scuba diving tanks or fire extinguishers.
A most likely source can be your local testing facility for each
type of tank. Ask your local fire department, welding shop and scuba
diving shop for their recommendation for a testing company. You may
be required to provide a letter to the testing company stating that
you will cut the tank in pieces and render it unable to hold
compressed air or gas.
Hoops & Rings
Try hobby stores for rings or
hoops often used for dream catchers, mandelas or macrame. Some are
chrome plated steel and others may require paint. Support rings can
be cut from an out of service aluminum fire extinguisher using an
abrasive metal cutting saw blade in a radial arm saw, a chop saw or
a table saw as described in step 3 above.
Eyelets-Grommets
Small eyelets can often be
located at your local hobby store in the sewing department,
Joann Fabrics or
a shoe repair store. You can also use the outer shell of a 1/8 inch
or 3/16 inch aluminum pop rivet. Remove the nail-like center and use
the rivet. Heat shrink tubing can be found online at Amazon.
Metallic
Support Line
Thin braided wire or 1/32 to
1/16 inch stainless steel cable, or decorative chain that is
zinc plated, brass plated, or painted can be located in hardware and
home improvement stores. Try a hobby store for small aircraft
control line cable.
Non Metallic
Support Line
Make sure the line is UV
resistant. Choices include fishing line (both 80 pound (35 Kg) braided or 30-50
pound (12-22 Kg)
monofilament), braided nylon line, braided plumb line, braided
Dacron kite line, light weight string trimmer weed eater
line (.065 inch), and braided electrical conduit pull
line.
Striker Material
A hockey puck, redwood, red cedar, red oak, treated lumber or a 1/4 inch nylon
cutting board work well for large diameter chimes. Smaller diameter,
higher frequency chimes benefit from a harder wood such as white
oak, teak or Osage-orange (aka hedge-apple). Be sure to coat the
striker with a UV resistant coating.
A
safe choice by many wind chime suppliers has been the pentatonic
scale (C D E G A). An enhancement to that scale can be the C9 Chord (C E G Bb
and D) which has a wider note separation for a good sound both close in and at a
distance from the chime.
You can also select a chord to you liking to maximize the useable
tubing in standard hardware store lengths. See this website to
view all the piano chords
www.pianochord.org, Thanks to site visitor Lewis for this suggestion.
With that in mind, we have DIY calculators for
all musical notes or for specific scales such as the pentatonic or the C9 Chord.
You select the metal and the tubing
size (ID and OD) and the calculator will provide the correct length and hang point for each
note.
The longer the chime the lower the notes will sound. So if a specific
tuning like Westminster traditionally begins in the C3 octave, like
B3-E4-F#4-G#4, feel free to begin an octave lower, like C2, which would look
like this, B2-E3-F#3-G#3.
Note Selection Table
Name
Notes
Number of
Chimes
Westminster
B3 - E4 - F#4 - G#4
4
Pentatonic Scale
C - D - E - G - A
5
C9 Chord
C - E - G - Bb - D
5
Hava Negila
C - Db - E - F - G (opt Ab)
5
Corinthian Bells Key of A
A - B - C# - E - F#
- A
6
Corinthian Bells Key of B
B - C# - D# - F -
G# - A#
6
Corinthian Bells Key of C
C - D - E - G - A - C
6
Corinthian Bells Key of Eb
Eb - F - G - Bb - C
- Eb
6
Corinthian Bells Key of G
G - A - B - D - E - G
6
Canterbury
D4 - E4 - F#4 - G4 - A4 - B4
6
Trinity
D4 - G4 - A4 - B4 - C5 - D5
6
Winchester (or Wynchestre)
C4 - D4 - E4 - F4 - G4 - A4
6
St. Michael’s
F4 - G4 - A4 - Bb4 - C5 - D5
- E5 - F5
8
Happy Birthday
C5 - D - E - F - G - A - A#
- Bb - B - C6
9
WALKING or TRAVELING CHIMES
Walking Chimes are chimes mounted on a stationary support, typically in a
straight line, allowing the walker to strike each chime in sequence thus playing
a song.
Space the chimes so when the player
walks at a steady pace it plays the song. Each word and dash represents a beat.
You can use any length for the beat but it must be consistent. You could begin
with one beat = 12 inches and modify from there.
For instance: “Joy” counts as one beat, so you will
measure six lengths from where you hang the “joy” bell (Joy plus five beats) and
then hang the “to” bell. Measure one length from “to” to “the” and from “the” to
“world” since there are no beat between these words. Measure eight lengths from
“world” to “all” (world plus 7 more beats) and so. The beats at the end are only
if you want to make it in the round.
Site visitor Carol Raedy graciously provided the following note patterns for
each song.
If the musical scale doesn't seem logical to you, you're right, it's not logical
to most of us non musicians. An octave is from C to the key just prior to the
next C, which would be B. Below is a graphical diagram that may help clarify
this.
Another Must Read
Caution:
Ending your project with a successful and pleasing sound is
important and setting the right expectations will allow that to happen.
Selecting musical notes for a chime is NOT like selecting notes on a
piano or other string instrument, or reed instrument. When you strike C2 on a
piano that is indeed what you hear but Not true for a chime cut for C2.
Tuning implies
exactness and exact tuning cannot happen when you do not hear the
fundamental note for the chime. When a piano key for C2 (65.4
Hz) is struck, you will indeed hear that note, 65.4 Hz. When a C2 chime is struck you
will NOT hear 65.2 Hz. In fact. you will not hear the first overtone at 180
Hz and can barely hear the second overtone at 352 Hz. Most prominent will be the
third overtone at 582 Hz which, on a piano, sounds like D5, but is not D5 because
the mixing for all the overtones produces a completely new sound. The new sound
is melodious, it sounds wonderful, but what note is it?
Tuning charts on
this site list dimensions for notes ranging from C1 to C9, that imply exactness,
which you now understand can not happen with a chime when you can't hear the
fundamental note. Read more about the
missing fundamental here.
Why this
happens is discussed in the section "The Science of Chiming".
For example, an orchestra grade chime that is physically cut for
C2 will actually sound about like C5. To see a visual representation for what a
chime is apt to sound like, see this
chart. On the
other hand, will the strike note for a chime sound pleasing and bell-like? Yes,
absolutely, because of the large complement of overtones, even though the
fundamental is missing. Selections from about C2 to C4 sound the most bell-like
but will not adequately radiate the fundamental tone.
Unfortunately this effect complicates note selection if you are trying to strike
exact notes lower than about C5. Above C5 the strike
note will actually be the fundamental and you can expect to hear the selected note,
but less bell-like than the C2 to C4 range. In fact, for that reason, orchestra grade chimes
typically only cover 1 ½ octaves beginning at C5 and
extend to about G6.
Thanks to a site visitor for providing this excellent emulation
program from 1996 by Syntrillium. They are now defunct and we believe the
software is considered "freeware". The zip file contains the main program, the
registration codes and a help file. Unzip the download and run the
wind_chimes_1.01_syntrillium.exe file. The program is quite intuitive, full
featured and should be easy to operate. To begin I would suggest you set-up the
program as follows: Number of Chimes "5", Transpose to "0", Scale to "New
Pentatonic", Base Note "C-4", "Center Pendulum". Remember, the loudspeaker connected to your computer
has the ability to play the low notes from C2 to C4 but a chime may not radiate
those sounds. The program was originally designed to run on DOS 6 using Windows
95, and runs with Windows NT, W2000, W XP and W7 thru W10.
Chime Emulation Software
by Greg Phillips. A well designed freeware called
Wind Chime Designer V2.0,
1997-2006-2020, will emulate a chime for notes between A2 (110
Hz) thru B8 (7,902 Hz) in 82 different scales. It will help you
determine what notes sound pleasant on a chime and what scale to use.
If your browser blocks his website try downloading if directly from
HERE. (Zip file)
Strike a note or strike a chord? Over the years much effort by many well-intentioned people has
been placed on exactly what is the best chord for a set of wind chimes? While a
musical chord can be pleasing to the ear, the effort to simultaneously strike
all the notes in a chord using the traditional circular shaped striker/clapper
has been a waste of time. The striker only contacts one, maybe two
chimes simultaneously.
This whole concept of sequencing and giving chime sets a name like Corinthian
Bells, Winchester or Pentatonic is a marketing exercise to sell more chime sets.
They do not play in sequence and the listener will likely never identify what
the random sounds from a chime set really represent. They're just notes. Selling
chimes with an advertised famous sequence is marketing and advertising on
steroids.
The good news is that with some of our innovative striker
designs we can now almost strike a chord. More on this in the
striker section. Also, if you dedicate a striker to each chime tube
(internal or external to the chime) that configuration can ring several chimes
at nearly the same time and approximate a chord.
When using the traditional round striker it is much better to
select notes that have a fair amount of separation allowing the ear to easily
discern a variety of notes. Often a traditional choice has been the pentatonic
scale (C D E G and A.) This choice can sound pleasant close to the chime set but
not so good at a distance. The C9 chord (C E G Bb and D) can be used to
widen the note separations for a five-chime set. The problem at a distance is the ear has difficulty discerning the closely spaced notes of the pentatonic
scale.
Caution at a distance
I often hear the comment, "I have a set of chimes on my deck and they sound
great. However, I was over to my neighbor’s the other day and the chimes did not
sound so good. In fact, they sounded out of tune. Why is this?" The answer lies
in the conditions that make up the notes for the chime. As mentioned in the
science section, a chime note is a combination of the fundamental strike
frequency and the many overtones. Some of the overtones attenuate more rapidly
than others at a distance. The original combination of strike frequency and
overtones are not the same at a distance. Remember, not always does the
fundamental frequency contribute to the note and not always are there many
overtones for a given note.
The actual note depends on exactly where in the musical scale the
chime is operating. When you have a chime that contains a larger number of
overtones that are located in the higher frequencies, and mostly missing the
fundamental, you can get this distance effect. High frequency sounds attenuate
more quickly in the atmosphere than do the lower frequencies. At a distance you
are not hearing the same sound you hear close in. Some of the high frequency
sounds can be greatly attenuated or missing. The chime can sound completely
different under these conditions. Typically this occurs when you select notes in
the lower part of the scale.
If your interest is making the chimes sound good at a distance of
say 80-100 feet or more, consider increasing the diameter of the tubing from the
traditional sizes ranging from half inch thru two inches, up to at least 3 inch
or more; 4 to 6 inches are better. A set of chimes designed for the C2 to the C3
octave have good acoustic radiation properties close to the set but not so good
far away because of this distance effect. Additional information later on this
page HERE.
Quieting the chime set: Chimes can easily become annoying so maintaining
a subtle sound is important, particularly in high winds. Softening the striker
often helps in addition the use of the keeper-striker. Typical striker materials
are a rubber hockey puck or other soft rubber coverings found in the plumbing
section of the local hardware store. Here are a couple examples. The
first example uses plastic aquarium tubing to cover the inside diameter of the
keeper striker. The second uses a 3 inch and a 4 inch section cut from of a PVC
plug for 3 or 4 inch PVC pipe.
Another
solution from site visitor Troy is to drill holes at the top and bottom
nodes. Hang tubes so the bottom nodes line-up. Thread string through the nodes
with spacer between tubes. He used 4 mm poly garden water tubes he had on hand. Other spacers and line would also work.
Also, you can thread a 50# monofilament fishing line or weed
trimmer line around the outside tips of the
star to keep the tubes from escaping and mixed up. Drill a small
horizontal hole at the tips for the monofilament line.
Building
Big! Whether you want a set of large chimes used in the sound
healing and therapy arts, or you because of the
anticipated lower frequency sounds, similar to a large diameter gong, or because
you have a commission for an artistic display in a public location, building
big may not accomplish all your goals. Certainly, a set of long, large
diameter chimes as shown to the right (built by Chris from Wisconsin) will
sound awesome, but a few words of caution before you head in that direction.
Since you read the caution statement above about the missing fundamental and the
issues with the small radiation surface area for a chime tube, you can
better understand how the insensitivity of the human ear at low frequencies
contributes to our inability to adequately hear the low notes, mostly below
about C4. I am often contacted from the website when someone wants to Build
Big. After completion of their large chime set they write to say, "My
new chime set sounds wonderful, but not as low as I expected."
Beginning
with the right expectations will help you move successfully along the
design path. Large diameter long chime sets are definitely worth the effort. Be
mindful of annoying nearby neighbors since this sound travels far.
Below is an attempt to demonstrate loudness and note selection at a distance.
Most often the chime designer considers cost, weight and aesthetics. Your budget
may not approve the cost of copper and aluminum may be more favorable than steel
because of weight. Chimes from EMT (electrical conduit) are galvanized and
resist rust but not the support hole or the ends. Rust could be an issue long
term for EMT. For the purposes of chime design use the steel selection in the
calculator if you're EMT (thin wall conduit)..
Good source for tubing: Speedy Metals
by the inch
and no minimums for Aluminum, Brass, Copper, Cast Iron, Steel, and
Stainless Steel,
orTitanium Joefor titanium by the foot.
What metal sounds best?
After the issues above are properly considered we can move to the
question of what metal sounds best for a tubular chime? The short answer is the
thicker the wall and the larger the diameter, the better they sound, not
necessarily the type of metal. However, what sounds best is a personal choice
and I have not found a good answer for everyone. Some like a deep rich sound and
other like the tinkle tinkle sound. Copper chimes have a different timbre than
steel chimes. The best I can advise is to visit a chime shop and test-drive a
few chimes of different metals and different sizes.
When selecting tubing size and
you're undecided between two sizes, select the tubing with more mass. More mass
will produce a better sustain time. This selection may be the chime with a
thicker wall or a larger diameter. On small diameter chimes (about 1/2 to 1 1/4
inch) do not use tubing with an unusually thick wall. When the wall thickness is
large compared to the diameter, the extra stiffness can actually inhibit sustain
time. Always test the sound of tubing before deciding, particularly if you are
evaluating several sizes. Support the tube at the 22.4% location using a string,
and strike with something like a heel of a hard rubber shoe or a wood mallet.
You may hear someone say they like aluminum best or copper best. To better
understand the difference in metals let’s properly build two 5-tube sets of
chimes using the C9 chord beginning with the C2 octave. One set from aluminum,
2” OD with a 1/8” wall thickness, and the other set from steel, 2” OD with a
1/8” wall thickness. While each set will have different calculated lengths, they
will both strike the same fundamental note, but sound completely differently. Why is
that?
Contrary to intuition there are
only two variables that control the sound of a chime, i.e. the
density and elasticity of the metal. Those two variables control
the specific length dimensions to achieve a desired note for a given
tubing size and wall thickness. From the chart at the right
you can see that aluminum has the lowest density and the lowest
modulus of elasticity (deforms easier than the others) , while
copper has the highest density but is only midrange for elasticity.
What does all this have to do with what metal sounds best? The
differences among metals cause a difference in timbre for the same
note.
Modulus of Elasticity
p.s.i.
Density
Lbm / in3
Aluminum
10,000,000
0.0980
Brass
17,000,000
0.3080
Cast Iron
13,400,000
0.2600
Copper
16,000,000
0.3226
Steel
30,000,000
0.2835
Stainless Steel
28,300,000
0.2830
Titanium
14,900,000
0.1630
On occasion you may hear someone say they like aluminum chimes
best. That likely occurs because the lower modulus of elasticity for aluminum
requires less strike energy for resonant activation and for a given input of
strike energy. The aluminum chime can be louder and have an increased sustain
time. However, the difference among metals does not make one metal good and
another bad. There are no bad sounding chimes when the notes are properly
selected, tubes are properly tuned and properly mounted. It's impossible to have a set of chimes for the
same note range made from aluminum sound the same as a set made from steel or
any other metal, because of their difference in density and elasticity.
If you want the smallest possible chime set for a given note range use brass.
Opposite to brass, EMT will provide the largest physical set for a given note
range. For example, see the table below organized smallest to largest for
middle C (C4).
Length for a one inch
diameter chime at middle C (C4) , smallest to largest.
Brass .065 wall
Copper M
Cast Iron
Titanium .065 wall
Aluminum .065 wall
Aluminum .035 wall
EMT
26 1/8 inch
27 inch
28 7/16 inch
29 1/8 inch
29 5/16 inch
30 7/16 inch
32 7/8 inch
Not all tubing is created equal:
Be aware that some tubing may produce a beating effect when struck (the wah-wah
effect).
Two closely spaced frequencies will interact to produce a third frequency. This is often due to variations in the cross section of the tubing
caused by
variations and inconsistencies in the manufacturing process. The elasticity and
the density of the tubing will be different, depending on where the tube is
struck. The tube can produce two closely spaced frequencies and these two
frequencies will produce the beating effect. Some people enjoy this
effect and others may find it annoying. If you want to avoid this wah-wah
effect, make sure you acquire high quality tubing – or test a small piece before
buying in bulk. While some tubing may be considered poor quality for musical
requirements, it can be excellent for structural needs. The problem with tubing
that exhibits this effect is that it makes precise tuning more difficult.. Listen HERE (mp3) to
the beating sound for the tube shown to the right.
If you know the exact material density and
modulus of elasticity, enter those parameters into the DIY Calculator on the
data page, when using the DIY calculator.
I want to emphasize that good tuning will certainly help to
accurately produce the appropriate overtones for the selected note, particularly
for the higher note ranges.
About Tubing Dimensions: Aluminum and brass tubing tend to exactly follow their stated ID and OD
dimensions while copper tubing does not.
Wall thickness for copper pipe varies with the pipe schedule. The four common
schedules are named K (thick-walled), L (medium-walled), M (thin-wall), and DWV
(drain/waste/vent - non-pressurized).
The printing on the pipe is color coded
for identification;
K is Green,
L is Blue, M is Red,
and
DWV is Yellow.
Both type
Mand type
L
copper
can be found in the plumbing section of home improvement stores like
Menards®,
Home Depot®,
Lowe's®
and
Ace Hardware®.
Pre-calculated tube
lengths for some common metals used in chimes are in the table
below.
If you desire a size different than the pre-calculated tables, use the
DIY Excel Calculator.
Pre-calculated Tube
Length and Hang Point Dimensions
All Notes [English and Metric] PDF Requires a free PDF reader like
Adobe® or
Foxit™
Click on a specific metal and size
to download dimensions
or the top row to download a family of dimensions
Caution,these values allow you to get close to the desired note (typically within 1%) but if you desire an
exact note, cut slightly long and grind to the final length, but not
required for wind chimes. Do not use these calculations for an
orchestra or a musical setting unless you are certain they use A=440
Hz. An orchestra or symphony may brighten slightly and will
typically tune for A=442, 43 or 44 The above chart uses A = 440 Hz.
Most symphony grade instruments are shipped with A=442 Hz. Also,
orchestra grade chimes typically do not go below the C5 octave.
There are manufacturing dimensional tolerances that may cause slight
inaccuracies in the actual results not to mention the effects of
poor material handling, along with slight variations in material
properties and impurities. If in doubt, cut slightly long and grind
to final values. You can measure frequency for verification using
any number of
software programs listed
here.
Below are dimensions for Type L and
Type M Copper Tubing and EMT
dimensions.
Values can vary slightly because of manufacturing
tolerances for
diameter, roundness, elasticity, density and poor
handling.
Angle-Cut Tubing:
A 45° cut at the bottom or top of the tube can add a nice
aesthetic touch; however, the tuning for each chime tube
will change considerably from the 90° cut value. The shorter the chime the more the tuning will
change. For example, here are the changes for a 5-chime set made from
2 inch OD aluminum with a wall of .115 inch. The set was originally cut for the
pentatonic scale (CDEGA) beginning at C6 using 90°
cut tubing. After a 45° cut at the bottom end of each tube,
the tuning increased from about 5% to 9% depending on length. Unfortunately, the
rate of change was not linear, but a value
specific to each length of tubing. Tuning increase was C6 =+5.5%, D =+6.6%, E
=+7.5%, G =+7.6% and A=+8.8%. Your notes may change more or less than these.
Additional testing was performed for a number of
different diameters and different lengths using aluminum, copper and steel
tubing. The results were very consistent. Short thin-walled tubing of any
diameter changed the most and long thick-walled tubing of any diameter changed
the least. Short tubing (around 20 inches) could increase the tuning by as much
as 9 to 10%. Long tubing (35 to 40 inches or more) could change as little
as 2%. It was impossible to predict the change other than the trend stated above
for short vs. long. This was not surprising because shorting a tube will
naturally increase the note frequency.
If you want to maintain exact tuning using a
45° cut, cut the
tube longer than the value suggested by the DIY calculator or the pre-calculated
tables, and trim to final value using your favorite tuning method. If exact tuning is not required or important, cut the
tubing to the suggested length by the calculator to pre-calculated chart, and trim the end at 45°.
If you are attempting to create exact notes for an orchestra setting, exact
tuning is required and the use of an electronic tuning device or a good tuning
ear is necessary. On the other hand, if you desire a good sounding set of chimes
but do not need orchestra accuracy, then carefully cut and finish to the
length suggested by the
pre-calculated table
or
the DIY calculators
listed above.
Frequency
measurement:
Measuring the exact frequency and musical note of the chime is challenging at
best. Read the caution
about chromatic tuners below!
There are a host of apps for Chromatic Tuners available for an iPhone,
iPad or Android. Site visitor Mathew George uses “gStrings” on his Android,
pictured right.
I use the $.99 app “insTuner” on an iPad that includes an FFT spectrum analyzer
in addition to freeware Audacity® on a Laptop described below.. A few scrap
pieces of wood to make two U-brackets, rubber bands and you're in business. Mark
the support nodes 22.4% from each end for locating the rubber bands.
If you have just a few measurements to make, a quick and easy support suggestion
is a
string with slipknot
positioned at the 22.4% node, pictured right with the iPad.
Caution: It can be
challenging and often impossible for a chromatic tuner to measure a chime note correctly.
Non linearity of the human ear and a chime's non-harmonic overtones are two
reasons.
Chromatic tuners listen and display sound as it is being produced on a linear
basis for both amplitude and frequency, but our brain process the same
information using fuzzy logic. Why is this a problem?
Unfortunately, the human ear is
no doubt the most non-linear and narrowband
sound listening device we know of. Similar to other percussion instruments,
chimes do not produce fundamental frequencies and pure harmonic
frequencies like string instruments, wind tubes and reed instruments, for which
chromatic tuners are intended.
Instead, there are numerous non-harmonic overtones present which (depending on
their individual frequency and amplitude) can be predominant to a tuner or
analyzer, but make little or no difference to the human ear. A chromatic tuner
may display the predominant amplitude and frequency, but that may not be what
the ear actually perceives. Because of the brain's "fuzzy logic" characteristic,
the many overtones associated with a particular chime fundamental frequency,
combine to produce a musical note the brain recognizes, but may not be
recognized by a chromatic tuner.
It is difficult to provide an exact recommendation when to use the tuner to
measure a chime's note, but in general, I find most any note below C4 difficult
to measure and on occasion below C5. Long, low frequencies tubes, mostly measure
incorrectly because of the "missing fundamental effect" and the preponderance of
high amplitude overtones. Thick-walled tank chimes/bells can measure with
surprising accuracy because of a single pure tone above C4 that is not cluttered
with unimportant sidebands. However, thin-walled tank chimes/bells seem not to
do as well and they may be impossible to measure accurately.
In addition, poor quality tubing exhibiting dual fundamentals, will
cause the chromatic tuner to constantly switch between the two fundamentals,
both of which are incorrect. If you are not displaying the note you expected,
try moving the chime further away from the tuner to help minimize unimportant
frequencies.
If you get a good steady
reading that is not what you expected, the tuner is
listening to a predominant overtone, so just ignore that measurement. Using the
values for length provided by the tables and DIY calculators on this page will
get you very close to the exact note. If the tuner cannot make a believable
measurement, use the calculated length for the chime.
A
good software solution for FFT spectrum analysis measurement is the freeware
program Audacity® used on a Laptop pictured right.
A few additional software
sources are listed below. Most any computer microphone will work. In fact, I
have used the microphone on a headset used for Skype and it works quite well.
To eliminate the annoying background noise when using a microphone, use an
accelerometer. I have good success supporting the chime horizontally at one node
by a rubber band and at the other node by a thin wire looped around the chime
and attached to an accelerometer.
Audacity® Laptop
freeware, open source, cross-platform software for recording and editing sounds.
Good for fundamental and overtone frequency measurements.
Tune Lab Pro version 4
Laptop freeware good for fundamental and overtone frequency measurements. At a
cost, available for the iPhone, iPad and iPod Touch, Windows laptops, Windows
Mobile Pocket PCs, Smartphones, and the Android.
Chime support:
The ideal chime support location to allow for a lengthy sustain time is
positioned at either of two locations; at the fundamental frequency node located
22.42% from either end, or at the very end using a string or cable threaded
through an end cap.
If sustain time is not a requirement (which makes a tubular chime, a bell
sounding chime) such as for orchestra chimes pictured to
the right, then support can be through horizontal holes near the end of the
tube. A chime supported in this manner reduces most of the sustain
time. I do NOT recommend this method of support to achieve a great sounding set
of chimes.
You may see commercial wind chimes supported in this manner, but they
cannot support the tradition bell-like sound that you may be expecting.
Incorrect support ranks as the number one mistake made by some commercial chimes
sets on the internet and in stores. They will produce a strike
note but lack the rich resonant bell-like sound that results from proper
support.
.The
first support
method for a bell-like sustain time uses the traditional fundamental
frequency node which is 22.42% from either end. See the Transverse vibration
mode diagram at the right.
An important objective for a bell-like chime is to preserve the resonance of the
chime as long as possible. Accurate placement for the support holes helps to
assure the high quality (Q) or hang-time or sustain time for the chime. A hole
size of 1/16 inch can be drilled directly on the location mark but for larger
holes, try to place the top of the hole so it aligns with the location mark.
If you're curious about other support locations, it is possible to support the
chime at the first, second or third overtone node, but not recommended. All
charts and calculations on this page are for the support line to be located at
the fundamental frequency node which is 22.42 % from either end and is the
optimum location.
If you happen to have a background in both mechanical vibration
and acoustic vibration, it is easy to confuse overtones and harmonics. Overtones
= Harmonics -1, or Harmonics = Overtones + 1. This acoustic harmonic
relationship has no connection to the radio frequency definition of harmonics.
While
making this nice steel 10-chime set, site visitor David, made a good video
demonstrating how to locate the hang-point node using the chime's natural
vibration nodes, and a small pile of sand. See his video here
www.youtu.be/e7o7hf1AOl4
1st Fundamental
Frequency
1st Overtone, 2nd
Harmonic
2nd Overtone, 3rd
Harmonic
Animations
courtesy of Dr. Daniel A. Russell, Professor of Acoustics at Penn
State University.
May be more pleasing to the eye with less visible string.
Method 4
The 1/2 Wrap
Both ends feed from the outside to inside.
Method 4 When the knot can be concealed inside the tube or placed above.
Method 4 The 1/2 Wrap is a convenient connection for a chain mount using
either a cord or 80 pound braided fishing line.
Method 4 Slide the knot out of view for the chain connection.
Method 5 1/8 inch metal rod flush cut and deburred. Held with super glue or flair
the ends with a ball-peen hammer.
Method 5 1/16 inch or 1/8
inch metal rod
with a small rubber grommet on outside of the chime for each side
prevents buzzing.
Method 5 Can be used to support the concealed striker.
Method 6
Horizontal cable mount provides a new look.
Method 6 1/32 inch or 1/16 inch steel cable threads thru each hole.
Method 6 Small plastic beads assure even spacing among tubes.
Method 6 Even without the beads the tubes have a tendency to space
evenly.
Method 7
End cap support for copper tubing.
Method 8
Rigid mount using 1/8 inch bolt or larger.
Method 8 Securing nut not
shown.
Method 8 4-point rigid mount allows maximum support vertically or
horizontally.
Method 8 4-point rigid mount resist abuse in a park or playground
setting.
Method 9 Horizontal support
using a noninvasive soft cord or line.
Forming the inverted V wire pin
This example uses a number 12 copper wire but you can use
aluminum, brass or whatever works best.
Sharpen and fit a pusher board to the ID of
the chime.
Insert wire thru both holes leaving
sufficient wire to form decorative loops.
Form a decorative loop on one side only.
Adjust the loops to not touch the chime below the hole.
Position the pusher board perpendicular to
the wire.
Use moderate pressure to form the inverted
V.
A slip knot works well to secure the line.
Form the second decorative loop. Adjust the
loops to not touch the chime below the hole.
An inverted V is not absolutely necessary.
A solid 1/8 inch brass pin epoxy in place works well for aluminum.
For copper or brass tubing , fit a
1/8 inch brass pin into a 1/8 inch hole and file smooth.
Solder or epoxy the pin in place.
File smooth and finish.
Steel tubing, fit a 1/8 inch steel or brass pin
into a 1/8 inch hole and file smooth.
Solder or epoxy the pin in place.
File smooth and finish.
Finish with a smooth or hammered paint
finish.
An alternate inverted “V” support can be the wire arm from a binder clip shown
on the right. Remove the wire arms from the clip, stretch them out a little, and
position in place using needle nose pliers, wiggle the arm until the tips pop
out of the holes. Be sure to attach your hanger line first. The arms tend to be
self centering. The binder clips are available in different sizes so you can
match the clip to the diameter of the pipe. The wire diameter increases with the
size of the clip so make sure to check before you drill the pipes. (Submitted by
site visitor Tom, Thanks)
Another
option is the stainless-steel butterfly V-clip used in pool poles and tent poles
as shown here. There are plastic versions and stainless-steel versions, both are
on Amazon. Search for keywords ( Kayak Paddle Spring Clips Tent Pole Clips Push
Button Spring Snap Clip Locking Tube Pin). The stainless-steel clip can be made
to work on tubing sizes up to a 2-inch diameter. Not sure how small a diameter
tubing will work but I suspect ¾ inch might be the smallest. Submitted by site
visitor Ed. Thanks Ed!
Another alternate support was
submitted by Bud (Thanks):
I place a copper wire into a copper pipe and threaded it thru one of the hanging
holes, then solder it to the pipe (then cut and grind the excess flat with the
tube), and the same for the other hanging hole. Now I have 2 copper wires coming
out the inside top of the pipe. I chuck them up to a drill motor and twist,
being careful not to kink the wire. Twisting will center the wires in the tube
and leave a good looking single wire coming out the center of the pipe. This
also would work with steel tubing. This seems to work okay and it looks
cool with the twisted wire.
End Cap, the second support location
is when the chime tube is supported by a cable or cord through a hole in an end
cap. It is important to understand that the end cap lowers the fundamental
frequency and some associated overtones from values calculated by the DIY
calculator or Pre-calculated charts. For 1/2 inch copper tubing type L, the
fundamental is lowered by about 3% to 6% from calculated values on this page.
For 3/4 inch type L copper tubing the fundamental is lowered by about 11% to 12%.
The good news is that the end cap noticeably increases the duration for the
first overtone and the chime has a much more bell-like sound. Look at these two
spectral waterfall displays and specifically compare the hang time of the 1st
overtone for each. You will notice a considerable increase in sustain time for
the end cap supported tube.
Caution: be certain to solder the end caps
in place. An unsoldered or loose fitting end cap will completely kill the
resonance. An end cap must contact the entire circumference at the end of the
chime to function properly.
Waterfall display for a chime tube
supported by a hole in the end cap. Similar to the traditional
orchestra chime
Waterfall display for a chime tube
supported at the traditional fundamental frequency node.
End Cap
Support
1/2 inch Type M Copper Tubing
End
support for Rods: It is possible to support a rod at the
end. You might be tempted to inset a
screw eye at the end, but I can assure you that will completely kill the
resonance. Resonance for a tube or rod can easily be killed by touching the
end. The end cap is a special case that allows resonance to exist without
seriously reducing the sustain time. But adding a screw eye or any amount of
mass to the end can kill the sustain time for a rod. The easy solution that
works very well is to drill a small hole in the end of the rod and epoxy a
50 pound (22 Kg) woven fishing line into the hole. First tie a knot at the end prior to
inserting the line into the hole. This low mass and flexible connection do
not impact the resonance and provides an easy method for connection.
Playground
Chimes Support: Pictured right is a set of playground chimes for a full octave (CDEFGABC)
from anodized aluminum that was displayed on the website
External Works. This fun and easy DIY project has a couple of important
requirements. First, mounting follows the same requirement as above,
i.e. locate the support holes 22.4% from both ends. Rubber grommets help to
minimize the reduction of sustain time caused by a firm mounting, but are
not absolutely necessary for this application. Rubber has a tendency to
deteriorate over time and the use of a nylon or plastic sleeve would be a
good alternate. Firm and strong mounting is definitely a requirement for the
playground environment, but we need to prevent squeezing the tube at the
mounting location. Careful adjustment, when tightening bolts, can prevent
this squeeze. Keep the mounting somewhat firm to prevent the undesirable
BUZZ caused by loose mounting. Flexible grommets allow a firm mounting that
will prevent the buzz.
Keep the distance between the chimes and the support disk short no matter how they are aligned.
This is to assist alignment during high winds. If they dangle too far below
to the support disk, they can bump into each other and occasionally get
mixed up. A few inches would be best.
Longevity for a chime is important and careful attention to
the support lines and thru holes should be considered. Rapid wind changes
and UV light can quickly deteriorate support lines, not to mention the many
freeze/thaw cycles.
Non metallic support line: Make sure the line is UV
resistant. Choices include fishing line (either 80 pound braided or 30-50
pound
monofilament), braided nylon line, braided plumb line, braided Dacron kite
line, string trimmer/weed eater line (.065 inch),
awning cord, and braided electrical conduit pull line.
Metallic support line: thin wire, decorative chain
(zinc plated, brass plated, or painted), 1/32 or /16 inch stainless steel cable (rust
resistant), small aircraft control line cable.
De-burring: depending on where the support line exits the
chime, from the inside or outside, one or the other sharp edges
of the thru hole require de-burring. An easy method to de-burr the outside
edges of the thru hole is to use a larger drill bit to slightly chamfer the
outer edges. If the inside edge of the thru hole is of concern, first remove
the burr using a long round file or sandpaper on a stick.
By hand, insert the smooth shaft end of the drill bit or other
hardened steel rod into the hole and rotate in a circular motion, careful
not to break the drill bit. This motion will tend to further chamfer the
outside edge and help to burnish the inner edge of the hole.
Grommets/Eyelets: are mostly for protecting the outside edge of the thru
hole. Rubber, plastic or metal (grommets or eyelets) are encouraged,
but small sizes can be a challenge to locate. Small eyelets can often be
located at your local hobby store in the sewing department or at shoe repair
store. You can also use the outer shell of an 1/8 inch or 3/16 inch aluminum
pop rivet. Remove the nail-like center and just use the rivet.
Sources:
include Home Depot or Lowes for heat shrink tubing, eyelets from the hobby store in
the sewing department or a shoe repair store. Grommets can be from a
hardware store, the model airplane store or the hobby store.
The knot in the support line or wire can be mostly hidden
by use of a countersink hole when using thru holes to anchor the line to the
support disk. Pictured below are a few examples for anchoring the line.
Jigs to position the chime for
attaching support line or chain:
After you have selected the alignment configuration, top, center or bottom,
a simple jig can assist the installation of the support line. To the right are
three possible jigs, a square-grove jig and a v-grove jig, both with red
adjustable stops for alignment. A third jig made from a section of cardboard
or wood strip can work well. Scribe a mark for the bottom, center, or top
alignment on the jig. Begin with the longest chime and select an appropriate
length for the attachment line from the chime to the support point on the
support disk or ring and locate a nail, a pencil mark, or the adjustable
post at that location on the jig. Place the longest chime on the template
and secure with tape, a clamp or maybe lay a book on it. Stretch the line up
to the reference post and tie a loop or a knot or mark with a felt tip pen.
Repeat with the remainder of the chime set using the scribed reference mark.
For center aligned chimes attach a small section of masking tape to the
center of the chime and scribe the chime center location on the tape.
Support Line Suggestions
Deburr inside hole
using stick and sandpaper.
Chamfer outside hole using an
oversized drill bit.
1/8 inch and 3/16 inch aluminum eyelets and a
pop rivet.
Outside hole with aluminum eyelet.
Eyelets do not protect the line
from the inside edge.
1/8 inch and 3/16 inch eyelets using the top
hat from a pop rivet. Use only for thru line.
Heat shrink tubing can protect the
line from the sharp inside edge of the hole.
Shrinkable tubing in place and operational.
Good place to use heat shrink
tubing.
Eyelets required for the outside
edge only.
Number 12 copper wire bends easily to
form an inverted V.
Double support line for an unusually heavy
chime.
Half wrap hides the knot inside the
chime. 80 pound braided fishing line works well.
A solid pin with single line
support eliminates wear and tear on the connection.
Wind Chime
Support Disk and Striker PatternsPDF are available in the document to the left. The patterns are for tubing
sizes from ½” to 2” in ¼” increments, and for chime sets for 3, 4, 5, 6, 7, and 8
chimes. Generic layout patterns are also included
You may wish to calculate you own
dimensions for the top support disk using the support disk calculator. You
decide the chime diameter (CD), the striker radius (SR) and the clearance between the striker and the chime
tube
(D). The calculator provides the correct location for placing the chimes on
radius (R) and the spacing between the chimes (C2C), and the
diameter of the support disk (TSDR). Locations (S) are the points
for the support line.
Instructions for use are included with the calculator.
Also
included is a location calculator for points on a circle. Uses include automatic
calculations for locating chimes on a radius, and points used to draw a
multisided polygon such as a star striker or support disk arranged as a star, a
pentagon, a hexagon or an octagon etc. An easy lookup table is provided for
locating 3 to 8 points.
Rather than using a protractor to layout the angles for the shape of your
polygon, select the number of points and the radius (R) for those points,
and the calculator provides you with the distance between points. Adjust a
compass to the distance (L) and walk the compass around the circle
to locate the points.
If you want to avoid using the above calculator, an easy work-around is to select
an appropriate generic pattern from the
Support disk
and striker
patterns document and scribe the accurate location for support holes using
the pattern.
Suggested locations for a circular
chime configuration
A circular striker will typically strike one
chime at a time but can simultaneously strike two chimes. When this
happens you can enhance the overall sound by placing widely
separated notes next to each other For example, below are
location suggestions with chime number 1 as the shortest and moving
upwards in length as the location numbers increase.
Inline
configuration
1 - 3 - 5 - 2 - 4
1 - 4 - 2 - 5 - 3 - 6
1 - 5 - 2 - 6 -3 - 7 - 4
1 - 5 - 2 - 6 -3 - 7 - 4 - 8
Chime-Set Support Suggestions
To assist the wind striking all chimes use a fishing spinner for
support.
This allows the wind to slightly rotate the chime set.
A circular ring or
hoop provides an open air and see thru appearance.
Support rings can be cut from an
out of service aluminum fire extinguisher. Strip paint and brush
with a wire wheel.
Use an abrasive metal cutting saw
blade in a radial arm saw, a chop saw or a table saw.
Height of 3/8” to 3/4 “works well.
Chain, decorative cord, or braided
fishing line can be used with this top support hoop.
Use the generic patterns
document to mark the 3-point mount location holes and a generic
pattern matching your number of chimes.
Chrome plated steel rings and hoops
in a variety of sizes from hobby stores and online.
Look in hobby stores for rings or
hoops often used for dream catchers, mandellas or macramé.
Support disk cut from .075 inch
aluminum with a 3/6 inch x 3 inch eye bolt used with the striker-keeper
arrangement
Chain or UV resistant cord can be
configured for a
3-point or 4-point mount on a solid wood disk
A single screw eye is an easy
connection but more difficult to balance level.
Screw eyes or thru hoes support the
chain or cord.
If the star pattern is used for the
striker it can be duplicated for the top support.
You can also use the chime set as a
birdhouse.
Pets, sports logo or a favorite
hobby can adorn the top of the chime disk.
A decorative hand painted funnel or
pan lid adds uniqueness to the set.
Orchestra
chimes, of course, need a human to strike the chime and a rawhide-covered rubber
mallet works well. A rawhide-covered baseball or softball can work well for wind
chimes, but only in an extremely high wind environment where there is ample strike
energy from the sail. An orchestra chime is struck with gusto, but a
wind chime often has little strike energy. Typically there is little
strike energy from normal winds so preserving and applying that energy is the
challenge. Design considerations below include single or multiple strikers, the
shape, weight, material, suspension, motion, and strike
location.
An important consideration for a bell-like chime is the
location for the Strike Zone. The optimum location is at the very end of the tubular chime because this
location will assure that all possible overtones are energized to the maximum.
This should not be surprising since orchestra chimes are struck at the end. An
easy solution to assuring the strike occurs at the very end of the chime is to
use bottom alignment and a tapered striker as shown in
striker suggestions.
Often you will see the center selected as the strike location for a tubular bell
wind chime, perhaps for aesthetic reasons. When the exact center of the chime is
struck the odd numbered overtones can fail to energize, and the resulting sound
can be very clunky even though the even numbered overtones were well energized.
While I recommend striking the end of the chime, there are good aesthetic
reasons to align the chimes for a center alignment or a top alignment. The ideal
strike zone is about 1 inch from the end, or about an inch below the center,
line as pictured below. All three locations work okay when you keep the striker
away from dead center, which is a dead
zone for the first overtone. Don't worry much about killing the first overtone
with center placement. The first overtone dead zone is very narrow and easily
overcome with a slightly off-center strike.
Strike zone for top, bottom or center alignment.
Top Aligned
Find the center line for the longest chime and position the striker
at least an inch or more below that center line. Anywhere in the
green section above.
Bottom Aligned
Find the center line for the shortest chime and position the striker
at least an inch or more below that center line. Anywhere in the
green section above.
Center Aligned
Find the center line for all chimes and position the striker at
least an inch or more below the center line. Anywhere in the green
section above.
The Striker Shapeis most often
circular because the chimes are located in circle. An alternate shape is the
circular traveling radial striker which can be effective for striking a musical
chord. The radial striker most often takes the shape of an open star or a closed
star, like the keeper-striker pictured here. The striker has a tendency to rotate CW
and CCW as it bounces to and from each chime. A circular striker will typically
contact one or maybe two chimes simultaneously. However, the star shaped striker
can synchronously contact most all the chimes. The loudness of the chimes
struck with a star striker is somewhat reduced compared to the circular striker
because the strike energy has been distributed among the various chimes.
Transparent
Closed Star Keeper-Striker: Site visitor and chime set builder, Dennis
Wagner, devised a nifty method to gain the advantage of a keeper-striker, yet
maintain a clean and transparent look. Dennis drilled 3/64 inch holes at
the star tips and threaded 50# test monofilament fishing line (1/32 inch) thru each hole to
form a firm but transparent circular keeper.
Striker Weight: A heavy striker for large chimes and a
lighter weight striker for smaller chimes, is mostly true. Depending on your
typical wind there may be occasions when you need a light weight
striker for large chimes. Near the seashore, winds can be rather strong and you
may need to soften the strike with a light weight striker or switch to a
rawhide-covered baseball or softball. Considerable strike energy can be achieved
by using an oak disk machined to a knife-edge and loaded with a 1oz weight. See
striker suggestions
below.
Striker Distance from Chimes: It is difficult to predict the optimum
distance from the edge of the striker to the chime for a new design and often
requires experimentation. Additional factors effecting overall performance are
striker weight, wind sail size, sail weight and average wind conditions in the
area. I generally begin with a 1-inch separation and begin testing. Then maybe
change the separation and/or the sail size. Don't hesitate to abandon your
original striker or sail and try a different separation or a different wind
sail. Your effort will be rewarded when you hit that magic combination. Often, I
will try about three strikers and two or three sails before finding the perfect
combination.
Striker Material: The choice of material depends somewhat on the note
selection. If there is good movement from the wind sail, then a circular disk
striker (soft sided but heavy) can be used for the larger diameter chimes (say
above 2 inches), particularly for lower frequency
chimes. Some choices are a hockey puck, redwood, red cedar, treated lumber or a
1/4 inch nylon cutting board.
Bullet Nose Edge: If you want a rounded over edge for the circular wood
striker and don't have access to a router then you can easily accomplish that
task with a drill press or hand drill. Mount the striker in a drill press via a
center bolt and then spin it at a high speed to sand it round and round over the
edge. You could use a hand drill but it's a little more awkward.
Note: when drilling a center hole in the hockey
puck, the drill bit wants to grab and force its way through the rubber and may
drill off-center. My experience is to slow down the drill and secure the puck to
a surface so it can’t move, then drill very slowly. A drill press woks best but
again, secure the puck.
If the wind is quite strong and gusty, you may need to soften the striker even
further by using a rawhide-covered baseball/softball. The rawhide helps to
produce a very mellow strike in a strong wind. Smaller diameter higher frequency
chimes benefit from a harder wood like white oak, teak or Osage-orange aka
hedge-apple. Be sure to coat the striker with a UV resistant coating.
On the other hand, a well performing star-striker should be from
a relatively hard material, yet light weight, allowing for a quick response to
circular movements. The loudness of chimes struck with a star striker is
reduced, compared to the circular striker, because the strike energy has been
distributed among the various chimes, and a harder material is required for a
strong strike. 1/8 inch soft aluminum, sheet plastic or a 1/4 inch nylon cutting
board works well to accomplish
both goals.
Keep it Clean:
A dirty strike can energize a host of
unwanted spurious sideband frequencies as demonstrated by the steel striker in
the blue spectrum display below. A most melodious bell sound is achieved with a
softer strike that energizes overtones without spurious sidebands, as shown in
the purple spectrum display below.
Both strikers
produced equal loudness for the fundamental while the steel striker did a better
job of energizing overtones (louder) but at the expense of unwanted dirty
sidebands. The wood striker (hard maple) produced a most melodious bell sound
while the metal strike was harsh and annoying.
The Conceal and Carry Chime
hides a lead or steel striker on the inside the chime for large diameters chimes, mostly
above two inches as pictured left and right. This technique is seldom used
unless the chime set is large or becomes annoying, caused by the traditional disk
striker in high winds. Because the distance is insufficient for the striker to
gain momentum and strike with gusto, the inside striker could be a good solution
to quieting chimes in high winds. If you're looking for a muted sound from a
large set, maybe 4 inches and above, this technique is useful. The striker can
be a steel ball or a lead weight, normally
used as a sinker for fishing, and can be any of the following: a cannon ball
sinker, a bell sinker, a bank sinker or an egg sinker. Wrap the sinker
with about two layers of black electrical tape to prevent the harsh sound from a
metal strike yet still provide a strong but muted strike. Support for the
striker string or line from can be from the same point you use to support the
chime tube.
Striker Motion: I happen to live in
a wooded area with little wind and have struggled to achieve good strike energy
from low winds. With that in mind,
I set out to improve the low wind performance of the striker.
The objective is to maximize striker movement with little input
energy from the sail. The easy solution was to resonant the support line that
supports both the striker and the sail using the second mode bending principle.
This resonance will help to amplify and sustain the motion of the striker with
little input energy from the sail. Even though the sail moves in the wind,
it will act as an anchor for the resonant movement of the striker.
You can easily recognize this movement by using both hands to
hold a string vertically and have a second person pluck the center of the
string. The natural resonance of the string will cause the center to vibrate. If
you position the striker at the exact center between the top and the sail you
can achieve this resonance.
It is difficult to provide an exact ratio between the weight of
the striker and the weight of the sail. Depending on the actual weight for both
the ratios can be quite different. In general, when you attempt to resonant the
striker line, I suggest the striker not exceed the weight of the sail and
ideally the striker should be about 1/2 the weight of the sail. I realize that
if you use a CD as the sail a lighter weight striker can be difficult to
achieve. A heavy striker is difficult to resonant regardless of the weight
for the sail. Once you have a striker you like then a little experimenting with
the sail maybe required to achieve good resonance.
On the other hand, for medium to high winds and for a
non-resonant mounting, the wind catcher/sail should have a weight less than 25%
of the striker.
When resonance is working well you will notice as the sail comes
to rest, the striker will continue to bounce off the chimes for a few more
strikes, an indication the striker is dissipating the stored energy from
resonance. See this
Resonant Striker VIDEO
WMV, for a demo. Notice the large movement of the striker compared with little
movement from the sail.
Striker Suspension: A small 1/16-inch brass tube about 5
inches long thru the center of the striker allows for the suspension line to be
threaded and used as an axle for the disk. This helps keep the disk
horizontal during rapid and sudden movements from high winds. A stiff wire, like
coat hanger wire, can be used as an axle as shown below in
striker suggestions. Site visitor Rickey Absher purchased small aluminum
tubing from Amazon. There was sufficient tubing to make four axels. See picture
for details.
Suggestion:
a turnbuckle is often used to support the top support disk and as an axle for
the striker. Over time the turnbuckle can become unscrewed from wind movement.
Place a locking substance on the threads to prevent twisting, such as Loctite or
equivalent.
Thanks
to a site visitor who used lamp repair pipe nipples into a 3/8" hole with
lamp hoops to hold the the hanger support and the clapper/striker. The parts are
available in the big box stores and elsewhere. You might consider using some
thread lock to keep them secure. See pictures
Bullet nose wood striker with turnbuckle axle maximizes strike energy.
My favorite.
Knife edge wood disk.
Bullet nose wood striker with hollow axle
or wire axle maximizes strike energy.
Knife edge disk striker with weight and
axle.
Close up for tapered edge wood striker with
weight and axle.
Tapered edge wood striker
with axle allows striking the end of the chime edge for maximum strike
energy.
Typical arrangement for a tapered edge
striker with axle for bottom aligned chimes.
Typical tapered edge striker with axle for
bottom aligned chimes.
A sculptured tapered edge
striker adds a decorative touch for striking the edge of the chime end.
A sculptured tapered edge
striker assures contact with the very end edge of the chime.
Animation for a 5-point
open radial striker that rotates on contact with the chime
bouncing back and forth effectively striking a chord or most of
the chord.
The open star radial striker loudness is
reduced compared to the traditional round striker.
The closed star radial striker works great
for maintaining alignment in high wind conditions and produces a more
subtle strike.
The enclosed star radial striker can be
made from 1/8” sheet plastic, aluminum or other light weight but
relative hard material.
Multipliable configurations exist to
achieve a radial strike. This one might be appropriate for someone
working in the nuclear business.
3, 4,and 5 Chime Keeper-Striker.
3-Chime Keeper-Striker.
4-Chime Keeper-Striker.
5-Chime Keeper-Striker.
A fixed Striker mounted on a 1/4 inch aluminum
rod attached to a solid support disk is useful in high winds for a
softer strike.
Enameled coat hanger wire works well for an
axle.
Baseball / Softball good for a mellow
strike in a high wind environment.
Conceal and Carry
The chime carries a concealed lead striker inside a 2 Inch diameter or
larger chime, and provides a unique style with a more subtle strike.
2 oz lead weight wrapped with two layers of
black electrical tape provide a strong but muted strike.
A billiard ball or croquet ball are choices
for a strong strike on a small chime. Test first for harshness. Can be
too strong for some.
Wind Sails /
Catchers: The pessimist complains about the wind, the
optimist expects it to change, the realist adjusts the sails. by William Arthur
Ward.
The objective of the wind sail/catcher is to cause the striker to randomly
contact all the chime tubes. Traditional wind sails generally work well and can
be configured with a variety of materials, sizes and shapes as shown in the
document on the right.
Patterns for Wind
Sails/Catchers 1.5 Meg, PDF
My dissatisfaction with the traditional wind sail is that
single-direction winds have a tendency to cause the sail to swing like a
pendulum. That arrangement will swing the sail both to and from the direction of the wind, not allowing the striker to
contact adjacent chimes. That affect sounds much like
a dingdong, dingdong as the striker hits only two chimes.
As you may know, wind close to the ground can behave differently
than winds aloft, and often does not blow horizontally as intuition would
suggest. Instead, it is a multidirectional force with an ample amount of wind
shear.
To
better understand wind turbulence mixed with single-direction winds watch this
60 second video,
Bi-Directional Wind Vane VIDEO
(WMV, 3.2Meg) showing a bi-directional wind vane mounted on my deck. You
probably noticed the swirling motion mixed with single-direction winds and the
random uphill and downhill movement (pitch and yaw). Perhaps we can exploit this
force to make a better wind sail. Let's take advantage of this turbulence to
create a striker movement that is somewhat rotational in nature and does a
better job of striking all the chimes.
If you want to build a bi-directional
wind vane here is a concept drawing displayed in
3D-PDF.
The metal components are soldered together and the vertical support post is
rounded at the top.
I used thin sheet aluminum for the tail and 1/4 inch copper tubing for the vertical
support sleeve and the horizontal pivoting sleeve. The horizontal rod is 1/4
inch and Gorilla Glue is used to bond the parts not held with solder.
The
first of several solutions to better capture wind turbulence can be quite
simple. Mount the sail at 45° to the horizontal so as
to catch the pitch and yaw forces, as pictured on the right. Thread the support
line through two small holes next to the center of an old CD disk and tie the
knot slightly off-center to create the 45° slope. You
may need to glue the line in place for the long term.
A second solution is to hang the sail perfectly horizontal.
Counter intuitive, I agree, but depending on your particular type of wind it can
work surprising well, particularly if the chime set is hung from a high deck or
beyond the first story of the building and the wind is particularly turbulent.
Site
visitor (David) writes to offer an alternate method for tilting the sail. Place
the support line in the hole of the CD and tie to the line an object larger than
the hole such as a shot piece of dowel rod or colorful section of cloth. Now you
have a tilted sail and a sun sail, all-in-one. See picture at left. Thanks
David.
A
third solution is to make sure the top support disk can easily rotate in a
circular direction. Hang the top support disk not from a fixed ring or hook but
from a single support line as pictured to the right. The very nature of the wind
will catch enough of the chimes to rotate the entire set allowing the pendulum
motion of the sail to strike more of the chimes.
A fourth solution can be the
radial traveling star striker
described above. The very nature of the star striker is to quickly rotate CW and CCW from any input motion of the sail, even from straight line winds, and this
motion will easily avoid the dingdong sound.
Need More Dingdong?
At
this point you are most likely saying “WHAT” more dingdong? We just got done
solving the dingdong and now you want more! Yes, there is a condition when
excessive pendulum movement of the sail is useful and not sufficiently supplied
by the tradition wind sail. With the development of the keeper-striker or the
radial-striker, both of which are very effective in striking a musical chord,
there is a need for a robust movement of the striker. The radial striker
produces a more muted sound because the strike energy is simultaneously
distributed among all the chimes by moving in a circular motion. Thus the need
for a more robust strike.
Jerk, Jolt, Surge and Lurch:
We often describe the motion of an object in terms of displacement, velocity, or
acceleration. However, an additional motion description is the rate
of change of acceleration, although seldom used. The unit of measurement is often termed jerk but is
also known as jolt, surge, or lurch . Jerk supplies the sudden and rapid motion
from the wind sail to the rotary keeper-striker.
Introducing Orthogonal Sailing: We have developed a special wind sail to solve the need for more
jerk. As mention above, a normal wind sail will mostly swing to and from the
direction of the wind; however, the orthogonal sail has the unique ability to
fly aggressively at right angles to the wind direction. If the wind is from the
North the sail will fly East and West. Construction details are in the
Handbook and
available here. See the
video below for the
Orthogonal Wind Sail in action.
CAUTION !
The orthogonal sail can be dangerous. We do not recommend
hanging the chime set where the sail can contact children, adults, or
animals. The sail makes no noise and can swing a full 180 degrees in a
half circle motion. This quiet operation and wide swing can cause people
to be unaware of the danger. The sail is flat thin metal and can
possibly cut the skin or damage an eye as it swings. BE CAREFUL !
No Sailing Today:
Long and large diameter chimes present a considerable surface area to the wind
and can move sufficiently to cause a good strike without the need for a wind
sail. In addition, the large diameter striker, often associated with a large
chime set, can capture adequate wind for a good strike. Depending on the distance
between the striker and the chime tube, not all chime sets require a sail.
Pictured right are closely spaced chimes that easily contact the striker with
low to moderate winds. Because of the short distance between the striker and the
chime tube, the strike is not robust but adequate.
The best solution for you will depend on your type of wind. You
may need to try a few different sails for success.
Windless Chimes On occasion
there may be times when you want a set of chimes in a windless environment, or
even outdoors in a low wind environment like a heavily wood area. Using an
electromagnet to repel a high intensity magnet at the end of the striker rod can
provide you with endless possibilities. Typically named chaos engine,
this arrangement can produce a random movement for the striker. Powered by
either 120 VAC or a 12 VDC solar charged battery, the electromagnet is
controlled by a circuit board with an adjustable strike rate. You can design
your individual set of windless chimes using components purchased from Roger
Sonntag at
Sonntag
Creations formerly Newton's
Flying Magnets. Below is a short video demonstrating some of the
possibilities.
Contact: sonntagcreations@gmail.com
Ph: 585-615-4236
Out of service compressed gas/air cylinders, scuba diving tanks
or fire extinguishers are often cut and used as a chime or bell. Based on
physical measurements can we pre-determine a musical note for these tanks? To
the best of my research I do not find a mathematical method for calculating a
musical note for these tanks. Both the neck-end and the base-end seriously alter
the vibration performance of the cylinder rendering existing formulas useless.
However, once the tank has been cut to your desired length it is
easy work to determine the fundamental frequency using an analysis program like
Audacity®, a free, open
source, cross-platform software for recording and editing sounds.
Do not use any formula, table or chart on this
website to
predict tanks musical performance.
The frequency spectrum does not always follow the traditional overtone
pattern for a chime tube and can include a host of additional overtones normally
associated with the bell-like sound. See the spectrum diagram to the right.
Energizing all the overtones and avoiding the harsh sound when
using a metal striker can be a challenge. A golf ball or baseball can work well
but requires a robust strike to properly energize the overtones. I have
not had good success using a wood striker unless it's a really robust strike not
typically possible with a normal wind sail
Tank Length Matters or Maybe Not? A most perplexing situation
can exist for some tank lengths. We tested five sets of tank chimes, sets A, B,
C, D, and E pictured to the right. All chimes for sets D and E sounded distinctly
different and each had a different height, and a different fundamental frequency
and overtone structure; however, not true for sets A, B, and C.
In comparison, each chime in set A sounded exactly the same and
had nearly identical fundamental frequencies and nearly identical overtones, but
represented three different lengths. The same was true for sets B and C. There
was a slight difference in timbre among the bells, but a considerable difference in length for each
set.
Set B
has both a neck-end and a base-end chime from a compressed-gas cylinder. While
both chimes strike almost exactly the same fundamental frequency (295 Hz vs. 290
Hz), they are of different lengths and have a slightly different timbre but
sound mostly the same. Tank B was more melodious than tank A but not a lot The difference in overtone structure is pictured to the right.
I investigated circular mode resonance which is a function of
just material type, OD and wall thickness, and not length, as a possible
explanation for this effect. Unfortunately the circular mode resonance was
considerably lower than the observed resonance and offered no correlation to the
actual measurements. The calculated vs. observed resonances were as follows:
Calculated circular mode resonance were Set A = 35.4 Hz vs. 133 Hz; Set B= 29.7
Hz vs. 290 Hz; Set C= 71.7 Hz vs. 354 Hz. The formula was provided by
Chuck from Chuck's Chimes and is: F =
(T/(2*D^2))*SQRT(E/Density) where F = frequency, E = modulus of elasticity, D =
mean diameter, and T = wall thickness.
I remain a bit perplexed on exactly why length appears to have
little effect on the fundamental frequency and the overtones structure above
some critical length point. Clearly this was not a rigorous scientific test, but
enough to cause concern and points to need for further investigation.
Pictured below are a couple of tank chime examples from site visitor Grey Yahn from Pennsylvania.
If
you're new to cutting metal and looking for an easy method, I use an
abrasive metal cutting saw blade in a radial arm saw and it works equally
well with a cut-off saw, aka chop-saw.
The blade pictured left is under
$5.00 at Home Depot. Make certain to use a cutting disk designed for
the type of metal you plan to use. Using the wrong type of abrasive disk can
cause a dangerous explosion The traditional tubing cutter or hacksaw works well
also. Definitely use safety glasses.
Safety
Caution: All these tanks are highly regulated by the US Department
of Transportation (DOT), the National Fire Protection Association (NFPA), by
Transport Canada (TC) and others. Make certain the tank is safe for handling, is
completely empty (fill with water and empty to assure all gases are exhausted),
and is safe for cutting. Wear all recommended safety equipment including eye
protection, hearing protection and respiratory protection. The
tanks are heavy and can be dangerous when handling, use extreme caution.
The chime
tube can be stained, dyed, anodized or painted. A light weight
coating of spray lacquer, spray polyurethane, spray paint, a powder
coat or a crackle/hammered/textured finish (pictured right) can be
used without a noticeable reduction in the sustain time. However,
avoid thick heavy coats of latex as they seriously reduce the
sustain time and can kill the resonance.
Patina
finish on steel: Site visitor and artist, Roger Deweese, has
successfully applied a metal dye to produce some amazing patina finishes for his
tank bell chimes.
Read here about the procedure Roger employed.
The Aged Copper Patina Look
: a site visitor sent me a procedure to artificially age copper to provide
the patina appearance. The procedure works well and pictured to the left are the
satisfactory results. I have included the procedure here for your reference. Be
patient with this procedure , it can take several days to complete but the
results are terrific.
You will need two commonly available chemicals to complete this
process. The first is a rust remover that contains phosphoric acid. A couple of
sources are Naval Jelly® or Rust Killer™. Secondly, a toilet bowl cleaner that
contains either hydrochloric or sulfuric acid. Some choices are Zep® Inc. Toilet
Bowl Cleaner, The Works® Toilet Bowl Cleaner, Misty® Bolex 23 Percent
Hydrochloric Acid Bowl Cleaner and LIME-A-WAY® Toilet Bowl Cleaner. Read the
content labels carefully and look for any brand of rust remover that contains
phosphoric acid and a toilet bowl cleaner that has either hydrochloric or
sulfuric acid in your local store.
These are dangerous
chemicals. Wear safety glasses, old clothes, rubber gloves and
follow all manufactures safety recommendations. If the chemical gets
on your skin wash immediately with a liberal amount of water. Use in
a well ventilated area.
Begin by cutting your chime tubes to length and make any
length adjustments necessary for tuning. De-burr and remove any sharp edges
from both ends and the support hole.
Decide how you are going to support the chime, using either
end caps or a support line at the 22.42% location. Attach a temporary line
to support the chime vertically. This temporary line will get messy and can
be discarded at the end of this procedure.
Clean the chime using a soapy solution of dish washing
detergent like Dawn™ or equivalent. I also used a fine grade steel wool to
lightly scrub the surface. Dry completely.
Hang the chime vertically.
Soak a small soft paint brush or dry rag with the rust
remover and completely coat the chime. Allow to drip-dry. This could take
from a few hours to three days depending on your local humidity. This step
slightly etches the surface of the copper in preparation for the next
chemical step.
When the chime is completely dry remove the dried rust
remover from the chime using a dry cloth. Do not use water.
Soak a small soft paint brush or dry rag with the toilet bowl
cleaner and completely coat the chime. This could take from a few hours to a
few days depending on your local humidity. A second coat will help to
improve the patina look. This step causes the bluish green patina to develop
in the etched surface and will darken the smooth surfaces.
Allow a few days to dry and the chime should ready for
handling to install the final support lines.
The finished chime may not look like the picture above when
newly completed. It can take a few weeks to completely darken and turn green
in spots. Re-application of the toilet bowl cleaner may be necessary
I have had this patina set of chimes for several years and
the patina look gets better every year and holds up well in all kinds of
weather.
Artificial aging copper for the patina appearance
Cleaned and ready
for the process. Tube on the left sanded with 150 grit sand
paper, the right tube cleaned with steel wool.
First coat of rust remover applied.
Rust remover dried.
Excess rust remover wiped with a
rag.
First coat of toilet bowel cleaner
containing hydrochloric acid applied.
First coat of toilet bowel cleaner
dried.
Second coat of toilet bowl cleaner
dried. At this stage it doesn't look like much happened but be
patient, it gets better with time and weather.
After a few weeks in the weather.
After several months in the weather.
Reapplied the toilet bowel cleaner.
Completed process.
Sparkling Copper: An easy way to obtain the sparkling copper look is to sand
the surface of the copper chime using an orbital sander with about 150 grit sand
paper. This will completely expose fresh copper and leave behind orbital
scratches on the surface. Coat the sanded chime with a clear spray lacquer or a
spray polyurethane to preserve the new copper look. See picture to the right.
What is a Tubular Bell Chime?
Tubular chimes date to prehistoric times for a number of cultures, back nearly
5,000 years. Tubular bells chimes were developed in the 1880's when using
regular bells in an orchestra setting became impractical. Tubular bells closely
imitate church bells and the practice of using a resonant tube as a bell soon
flourished and became the traditional orchestra bell.
Traditional church bells or tubular bells can be characterized by their strike
note. That bell-like strike note can be expanded to include the overtone
structure, sustain time and loudness. That sounds simple enough, but imbedded in
that explanation are two definitions. The first definition is when a
chime, properly designed and constructed, can imitate a bell, and the second
definition is that a chime may not imitate a bell. Our objectives is to assist
you to achieve the most bell-like sound as possible.
Compared to a string or brass musical instrument, designing a tubular bell
chime presents a unique challenge not experienced elsewhere. Although unique,
building a great set of tubular bells can be easily understood and implemented.
Ending your project with a successful and pleasing sound is important and
setting the right expectations will allow that to happen. The information below
may help you to better set realistic expectations.
Loudness limits: One of the largest differences between a chime and other
musical instruments is loudness. Loudness depends on the physical size of the
chime i.e. the radiating surface area. Compared to a string instrument where a
sounding board is used to amplify the vibration of the string, or compared to a
brass instrument that is fitted with a flared tube to amplify the loudness, a
chime has no amplifying assistance, other than the inherent surface area of the
chime tube. Overall, this loudness limitation for a typically sized chime-set
will provide serious limitations for the available range of effective note
selection.
On the other hand, if you move up from a typical chime-set, into
the really large mega chimes, then good loudness is easily achieved. For
example, shown left is a large chime-set from
Sandra
Bilotto.
An exception is when the resonant frequency of the tube matches the air column
resonance for the tube, as described by Chuck from Chuck's Chimes.
Assistance from the energized air column adds a small amount of loudness.
The second limitation for loudness from a tubular chime
depends on the location of the selected note compared to the natural sensitivity
of the human ear. You can view the loudness sensitivity range vs. frequency of
the ear by viewing the Fletcher/Munson Equal Loudness Curves.
The ear has more sensitivity in the range from about 300 Hz to about 4 KHz, than
at other frequencies and helps to explain why we can not always hear all the
overtones, even if they are present. This loudness limitation will have a direct
affect on what notes work best for a chime.
Proportional dimensions:
Increasing the chime diameter increases the radiating surface area
and contributes to a louder chime but at a cost. The increased diameter greatly
increases the length requirement for a specific note, which is not necessarily
bad; it just makes the chime set longer as the chime diameter is increased. See
the graph to the right for musical note C4
On the
other hand, increasing the wall thickness has the opposite effect as an increase
in diameter. As the wall thickness increases there is a small decrease in the
length requirement for any specific note. In addition there will be an increase
in the sustain time from the increased mass. See the graph to the right.
Increasing the outside diameter while keeping the length and wall
thickness constant will cause a substantial increase in the resonant frequency.
The strike note vs. the sustaining note:
The perceived musical note from a chime, when first struck, is not simply the
fundamental chime tube frequency but the addition from a host of overtone notes.
Unfortunately, the strike note (which can have a very pleasing sound) has a
short life or a short sustain time caused by the rapid attenuation of the
overtones. The sustaining vibration (several seconds) will be the fundamental
strike frequency that may or may not be audible. Note selection will be decided
by whether you are interested in hearing just the strike note or perhaps more
interested in hearing the sustaining note. For example, a chime used in an
orchestra setting is typically a rapid sequence of notes with the strike note as
the predominate sound, and little if any time is allowed for the sustaining
note. On the other hand, a tubular bell wind chime is often characterized by the
long sustain time of a note.
The overtone structure
for a chime is not an integer harmonic as in string instruments but
instead, non-harmonic as in other percussion instruments. When the chime is
supported at the fundamental frequency node, see diagram at the right, the
higher partials are dampened but the fundamental strike frequency remains.
Overtones exist and in a perfect metal where the density and the elasticity are
constant, have theoretical multiples of the fundamental multiplied by X 2.76, X
5.40, X 8.93, X 13.34, X 18.64 and X 31.87.
However, in the real world of metal tubing, when metal does not have a
consistent density or elasticity, the multiples will drift from the theoretical
values either up or down by as much as +2% to -8% or more.
If we could hear the complete compliment of all overtones for each note of a
chime tube, it would be a most wonderful bell-like sound. Unfortunately, not all
the fundamental tones and/or all the overtones can be adequately radiated as an
auditable sound by the chime tube for all possible lengths of a chime. This
condition also limits the available range of notes that have a bell-like sound.
For example, a chime cut for C2 (65.4 Hz), the fundamental
frequency is audibly absent (aka the missing fundamental) along with little
audible contribution from the first overtone (180.5 Hz). The remaining overtones
combine to produce a perceived musical note. The perceived note does not
coincide with any specific overtone and is difficult to measure without a
frequency spectrum analyzer or perhaps a good musical ear. The good news is that
the brain processes the information present in the overtones to calculate the
fundamental frequency, using fuzzy logic.
Also see
this page by
Sarah Tulga, Sound Science, on the physics of metallic tubing and chimes.
You can see from the
waterfall display at the right (click to expand) that a chime cut for 272.5 Hz
(near C4#), has two characteristics. The first
characteristic is the sound when the chime is first struck, the Strike Note. It
comprises both the fundamental and the first four overtones, and has that
traditional chime sound for a short period of time.
The 1st overtone contributes for about two seconds and
rapidly deteriorates. The remaining sound is solely the fundamental strike
frequency. Note the long sustain time for the fundamental, pictured to the left
of the photo.
The 2nd, 3rd and 4th overtones are present and contribute to
the strike note but attenuate quickly. They have little contribution to the
lingering perceived sound, aka sustain time or hang-time
In contrast to the above example, the sound for a chime cut
at fundamental C6 (1046.5 Hz) and above is mostly the fundamental and the
overtones are audibly absent or mostly absent.
In addition to
the many overtones that may be present for a chime, we have the difficulty
of knowing which overtones are prominent for each note, because of the ear's
sensitivity as represented by
The equal loudness curves.
As you might suspect, the loudness of a particular overtone changes as we move
up the scale. For a typical ear sensitivity range of 300 Hz to 3 KHz, see the
data
audible fundamental and
overtones for wind chime notes as a simple example for the range of audible
overtones. Obviously this is not the entire audible range of the ear, but is
presented as a simple example of the limited ability of the ear to hear all the
frequencies generated by the overtone structure. In particular, the range of C2
to C3 contain a large number of audible overtones while the range of C5 to C7
contains very few. The note range from C2 thru C4 produce the most melodious
sounds, most bell-like, and are easy to build. Precise tuning is not required
unless the set is for an orchestra setting.
The missing fundamental
is when the brain uses "fuzzy logic" to processes the information
present in the overtones to calculate the missing fundamental frequency.
To gain a better understanding of the perceived note, I
examined a set of orchestra grade chimes manufactured by a major UK manufacture.
The set was 1 1/2 inch chrome plated brass with a wall thickness of .0625 inches
and ranged 1½ octaves from C5 (523.30 Hz) to G6 (1568.00 Hz). The length of C5
was 62 5/8 inches. The fundamental frequency for this length is around 65 Hz,
about C2# , yet the perceived note is C5 at 523 Hz. The fundamental
strike frequency of 65 Hz and the first overtone at 179.4 Hz (65 x 2.76 = 179.4
Hz) are audibly absent, aka the missing fundamental. In fact, even the second
overtone at 351 Hz will not be strong in loudness. The remaining overtones
(mechanical vibration modes) combined to produce what the ear hears
acoustically, which is C5 at 523 Hz, yet there is not a specific fundamental or
overtone at that exact frequency.
I spoke with the people at a major USA chime manufacture
(symphony grade) and confirmed that indeed the process of tuning an orchestra
grade chime is a complex process and understandably a closely held trade secret.
The process involves accounting for all frequencies from the fundamental
(whether present or missing) through the many overtones, by the use of
math calculations, acoustic measurements, and the careful grinding of the chime
to achieve the correct length for the desired note.
An orchestra chime is not supported by the classical wind
chime method using a string through the chime at the first frequency node 22.4%,
but instead, is fitted with an end cap that contains a small top hole through
which a steel cable supports the chime. From testing I find that the end cap not
only enhances the bell-like sound, by increasing the duration of the first
overtone, but it also lowers the fundamental frequency by about 4% to 12 % from
calculated values, depending on tube material and diameter. More on this at
Chime tube mechanical
support.
Many researchers have spent time investigating the missing
fundamental and the perceived note' from a chime. A few good sources are:
Hyper Physics. Fuzzy logic and the subjective pitch by Dr. John
Askil (no longer available) and
Wikipedia.
Using the above characteristics for a chime, I found a
limited set of notes that will produce a bell-like sound from a tubular chime.
Using the musical scale as a reference, they fall into three categories as
follows:
The 1st chime category
(most bell-like) has a note range from about C2 to the C4 octave. The
fundamental strike frequency is present but audibly absent,
the missing fundamental,
and there are a host of well pronounced overtones. Often the first overtone can
also be inaudible. The perceived sound is not the fundamental strike frequency
and not the overtones, but an imaginary note created by the combination of the
overtones. To the ear this is a very melodious sound and clearly a bell-like
sounding chime. The larger physical size of this chime for this note range
causes the loudness to be quite adequate, and easily supports radiation for the
many overtones. Note in the spectrum displays below, as we move up the musical
scale the overtone contribution becomes less and less.
The 2nd chime category (almost bell-like) has a note range from about C4
through to about the C6 octave. The fundamental strike frequency is mostly
audible and some overtones contribute to the perceived sound. The perceived note
is not the fundamental strike frequency and not the overtones, but a combination
of both that produce a perceived musical note. The sound can be acceptable but
may not be the sound you are looking for. This has an almost bell-like sound and
can sound fairly good, but not particularly melodious. The loudness is
acceptable but not great.
The
3rd chime category (non bell-like)
has a note range from about C6 through the C8 octave. Not unlike other
percussion instruments this category is characterized by an audible fundamental
strike frequency (a noticeable pure tone) with overtones mostly absent.
Overtones have minimal contribution to the perceived musical note. This note
range may not be particularly pleasing to the ear but should not be ignored as a
pure tone, and is definitely a non-bell sounding chime. In addition, the
loudness is typically low caused by the short length of the chime causing a low
radiating surface for the higher notes. The rapid attenuation of high
frequencies in the environment causes this note range to quickly diminish at a
distance.
I am not aware of calculations for
a tube closed at one end. i.e. a chime with an end cap.
This math is for a tube open at
both ends.
The bending natural frequency for a
tube open at both ends is predicted by Euler's equation where:
w = (B X L)2 x
√
(E X I/(rho X l4))
w - frequency radian per second
- for frequency in cycles per second (Hz), f = w/(2 x π)
E - modulus of elasticity
I - area moment of inertia = π x d3 x t/8 for a thin wall
round tube
d - mean diameter
t - wall thickness
rho = mass per unit length = Area x mass per unit volume = π x d x t
x density
L - length of tube
w= (B x L)2
x (d/I2) x √
(1/8) x √
(E/density)
(B x L)2 -
Constants based on the boundary conditions for a wind chime (Free-Free Beam)
(B x L)2 = 22.373 for the first natural frequency.
(B x l)2 = 61.7 for the second natural frequency.
(B x L)2 = 121 for the third natural frequency.
(B x L)2 = 199.859 for the fourth natural frequency.
To get the units correct you must multiply the values inside the square root by
gravity (g).
g = 386.4 in/sec2 for these units.
For a given material then the
frequency of a thin wall tube reduces to:
f = constant x d / l2
The reduced formula is: Area Moment of Inertia = π x (OD^4 - ID^4)/64
Area = π x (OD^2 - ID^2)/4
K = √((Elasticity x Moment x Gravity)/(Area x Density))
Length (inches) = √(22.42 x
K/(2 x π x f))
If you want additional math on the
subject here is a paper by Tom Irvine
Clearly there is more to a chime than I had anticipated and I am sure I have not
learned all that there is to know about the physics of a chime. This was
originally a Christmas present for my daughters and not a focused research
project. I am convinced that it is not necessary to hand tune a set of bell-like
chimes designed for musical notes from fundamental C2 through C4 because the
formula achieved the desired frequency well within 1 Hz. Tuning to achieve an
accuracy closer than 1 Hz was a waste of time. However, for a fundamental note
from C5 and up, good tuning is required. Good physical measurements are
important to achieve the calculated accuracy.
My favorite design has changed over the years and is currently an
end cap supported chime with the striker contacting the tube at the very bottom
of the chime using either a tapered striker or a star striker, and having the
wind rotate the chime set using a single line support for the support disk.
Unfortunately, I know of no formula for calculating the length of a chime tube
with an end cap. I begin with a length from standard calculations on this page
and then tune by trimming off the length. End caps lower the frequency by as
much as 8% to 15%, which requires removal of material to raise the tuning back
to the correct vale. Yes, it's a lot of work if you want exact tuning for a
tapered end!
On occasion I have added an end cap to the calculated value
for an open end tube in order to gain a more bell-like sound, but not adjusted
the length to regain accurate tuning. For the most part, it has been difficult
to acoustically tell the difference between the un-tuned chime set with an end
caps and a set of tuned chimes without end caps. Perhaps I have been lucky or
maybe the natural shift caused by the end cap is consistent for all five tubes,
and they remain mostly in tune.
Your particular type of wind (single-direction or turbulent) and
wind speed will determine the best choice for both the wind sail and for the
chime striker. Rotating the chime-set works well to solve the dingdong sound
caused from low velocity single directions winds.
Another phenomena we observed, but did not have time to
investigate, was the simultaneous production of sound from the natural bending
mode of the chime coinciding with the resonance of the air column for the tube.
The good news is that another engineer, Chuck at
Chuck's Chimes,
has done an excellent job detailing this effect. I suggest you give
this a look-see. He has excellent information and calculations to accomplish
this special effect.
https://sites.google.com/site/chuckchimes/home
01. Question:I want deep bass chimes that are resonate.
This is the most often asked question.
I saw somewhere on the site a casual comment about a chime not hitting C2. Did I
misunderstand? I want to buy some 2 inch EMT and tune them in a Hirajoshi scale
at C2 E F# G and B. But, that's $75 worth of EMT I'll be hacking up. Do you
think it will work? I just want a really deep bass set of chimes and I am hoping
2 inch EMT of 66 to 9 inches (using your EMT table) will get me something deep
and resonant. Any advice?
Answer:
An excellent question and you read
correctly. The chime will produce the C2 note at 65.4 Hz, no problem, but the
ear will not hear it? To hear 65.4 Hz we need to move a lot of air, thus the
need for woofers used in sound systems. If you place your ear about an inche
from the long tube "Surprise" you hear the 65.4 Hz, it’s actually there. But, back up two feet and you won’t
hear it.
What you actually hear is a chime note missing both the fundamental (65.4 Hz)
and the first overtone (180 Hz). You hear the remaining overtones.
So what to do? You can still make the long tubes cut for the C2 octave. The
larger size will enhance the overtones (second overtone, 353 Hz and up) and you
will hear lower notes than without lusing ong tubes, but it will not be the
actual C2 note. If you happen to have a small public address amplifier and
microphone, place the microphone about an inch from the tube. Again C2 is
actually there, but it needs amplification to be audible.
^Back to FAQs^
02. Question:We don't often have a lot of wind here so a design that
doesn't need a lot of wind is important. Somebody gave me a cheap little
metal commercial set and it basically never made any sound because there is
rarely a stiff breeze. What are your thoughts about this? Answer: The force from the wind is cube law, meaning a doubling
of wind speed produces nine times more force acting on the chime. So little
changes in the design can have a big effect on the sound. The best wind sail
is one that works with your wind. If you live inland in a sheltered area
with low winds you want a light weight sail (probably thin aluminum
sheet and large enough to adequately capture small winds, maybe 6-10 inches
in diameter). If you live lakeside or by the sea shore with strong gusty
winds then a heavier and smaller diameter sail is best (use ¼ to ½ inch
treated lumber, engineered lumber or a plastic/nylon cutting board).
^Back to FAQs^
The best approach is experimentation. Every special design I’ve done for
myself or artist has never been a standard design. As such, I may need
to build several prototypes where we change the spacing between the striker
and the chime, the size and the weight of the wind sail. At first look, chimes seems incredibly simple,
but the trick is implementation.
^Back to FAQs^
03. Question:Chimes for extremely high winds:
When I say extreme, I mean regularly 150 km/hr (92 MPH) and occasionally up to
225 km/hr (140 MPH).
My solution is two fold; first, place the chime set on the opposite side
building from where the high winds originate. However, on that side we still get
60 MPH winds several times a year. Secondly, use very heavy pipe. I found some
rusty 2 inch pipe with 1/8 inch walls and cut a set for C4. Unfortunately, it
wasn't long enough for a C3, which I wanted. Problem: It's so heavy that it's
tough to get much volume out of it, but it will resonates for ever. Do I want a hard strike with a hockey puck? I also want to add
in a 'star' type of thing to add some light tones and to contain the striker
inside the chimes.
Answer: Yes, with a heavy pipe you need a robust strike
as you suggest. If a hockey puck is inadequate, try a scrap piece of
treated lumber. If that is inadequate try hard maple or oak. Also, the size of
the wind sail is important here. Try different sizes until you achieve the sound
you want.
A star striker should work well in those high winds to assist in keeping
everything aligned, but in extreme winds they will probably escape the
star. You may need to thread a 50# fishing line or weed trimmer line around the outside tips of the
star to keep the tubes from escaping and getting mixed up. Drill a small
horizontal hole at the tips for the monofilament line. See picture to the right.
^Back to FAQs^
04. Question:I wanted to make a rod based wind chime twice as
big as the pre-calculated numbers, could I multiply the
pre-calculated numbers by two (to get double the length) and still have the
same tones as the pre-calculated numbers describe, only a bit deeper?
Answer: No, but you're almost there. The relationship is not
linear so multiplication will not work, but there is an easy way to do this.
Use the Ratio Calculator. Say for example, you have a one inch steel rod and
you want to go lower than the calculator will allow, i.e. below 32.7 Hz.
Using the calculator enter the type of metal
and the rod outside diameter OD,
one inch steel.
From there you will notice the lowest is 32.7 Hz with a length of 74 3/16
inches.
Use
the next tab at the bottom of the page named "Tubing or Rod Length Ratio
Calculator." See chart to the right.
Enter what you know, i.e. 74
3/16 inches or 74.19 and the frequency 32.7 Hz.
Then enter the desired frequency (half of the original) 16.35 Hz.
The result will be a length of 104 15/16 inches long with a hang point of 23 ½
inches.
Repeat this procedure for each
note you wish to lower. The same goes for chimes.
^Back to FAQs^
05. Question:
What
is the best line to re-string a chime set? I have about 20 chimes
that use a cheap support cord and the line breaks after a few years. I need to
re-string them and don’t want to have to keep doing that. I need something more
sturdy. Answer: My all-time favorite to withstand the weather elements is
light
weight chain. You can use aluminum, brass, stainless steel, or zinc plated
steel chain often found in hobby stores and occasional at the local home improvement
stores. Depending on the weight of the chime tube (light weight only) my second choice is 80 pound
braided fishing line. Make sure to de-burr the support holes smooth. A sources for chain
is: FRANK R. FERRIS CO.,
INC.^Back to FAQs^
06. Question:Should I begin at C3 or C5?
I
was fortunate in coming across a 20’ section of 1.625OD x 1.375ID aluminum
pipe. According to your spreadsheet calculations I’ve got just enough to make
the C-9 chord starting with C3. In reading your info I see that some of the
lower frequencies may not be heard more than a few inches away. Given the size
of this pipe do you think we’ll be able to hear C3 or might we be better off
making two shorter sets starting with C5? The thought of the longer pipe set
seems really neat! Answer: As long as you have enough to begin at C3, by all means start
there. You won’t hear much of C3 but the other notes will be much more melodious
and bell like. I often start there or C2, depending on the physical limitations
for mounting and the intended application.
^Back
to FAQs^
07. Question:Chakra healing chimes: I am using 3
inch OD by 1/4 inch wall aluminum tubing. I found a supply at the local scrap
yard but don't know its alloy. Upon hanging an 8 ft. length from my workshop
ceiling and striking it with various beaters I was amazed at its tone and
strength of vibration. Could you help me determine the lengths required to build
a set of Chakra healing / vibrational chimes consisting of 7 chimes? There are 7
notes / frequencies I wish to reproduce corresponding to the individual Chakra
's frequency; 396 Hz, 417 Hz, 528 Hz, 639 Hz, 741 Hz, 852 Hz, 936 Hz and an
eight option is 432 Hz. Answer: Sure, just us the regular calculator for A=440 Hz, enter the OD,
ID and type of metal then find the chakra frequencies in the frequency column.
If the calculator does not have your specific frequency, go to the bottom left
hand side of the
calculator and use the generic "Calculate Length or Frequency" calculator. Enter
what you know in the blue font box Frequency or Length. Here you can enter
a frequency and find the length and hang point, or enter a length and find its
frequency and hang point. See picture below.
^Back to FAQs^
08. Question:Can I use nickel-silver tubing? Is there a
way to calculate the hang points based on your tables? ID on one tube is 0.5
inch, the other 2 are 5/8 inch. My son, in the marching band, believes his
trombone is a weapon of mass destruction. After 3 rebuilds, I have tubing from
the leftover parts that I wish to turn into a wind chime. I asked the mechanic
about the composition of the tubing (brass or ?) and he said it was
nickel-silver. Sure enough, it has a pleasant high-pitched ring despite the long
(30 inch) length. However, the hang points don't seem to correspond to the brass
or aluminum columns in your table. Answer:
Only two issues effect the sound from one metal to another, density and
elasticity. The density of nickel-silver is 0.31 Lbm / in3 and
the elasticity is 18,500,000 psi. You can see from the chart at the right,
nickel-sliver is very close to copper. I would suggest using the copper charts
for the pre-calculated measurements or use copper in the DIY calculator. The
most important measurement is to hang the chime at the 22.4% point.
On the data page you can enter
the actual density and elasticity to produce an exact calculation.
^Back to FAQs^
09. Question:Can I mix sizes and metals?
Answer: Yes you can mix sizes within a given metal and you can mix
metals. Make sure you use the correct chart settings for each size, wall
thickness and type of metal. Best to experiment with different metals
because some combinations sound wonderful and other not so good.
^Back to FAQs^
10. Question:
Wondering why these tubes sound better when
the striker is placed an inch below center on the shortest tube with the
tops all the same height? When the striker is placed an inch below the
center of the longest the short tube has little to no sound? Answer: We want to avoid exact dead center
or near dead center for any chime and when
they are center aligned that is an easy task. But when they are top or
bottom aligned the striker can inadvertently come close to dead center for
one of the chimes. Because chime length is not a linear relationship as we
move up and down the musical scale, exact placement of the striker for every
chime set is slightly different. You did the right thing by experimenting to
find the best sound. On most every set, I often adjust the striker
higher or lower to achieve the best sound from every chime.
^Back to FAQs^
11. Question:
I am working on a Mark Tree chime set (bar
chimes, used by percussionists and drummers, pictured right). I checked on the
commercial ones and they all use the same hang point on the bars. It may be
because it is cheaper and quicker to make them this way and they look good, but
will not sound as good as the 22.4% hanging point method? I'd like to hear your
opinion about this topic!
Answer: A bar or chime can be supported at any point along its length and
will ring when struck, but not well. Good sustain time and rich contribution
from the overtones, that produce the bell-like sound, can only occur when
supported at the 22.4% location. All bars in the set pictured here will sound
distinctly different from each other, but will not yield the bell-like sound
because of improper mounting.
As a footnote, my neighbor (a very practical engineer) built a xylophone and did
some experimenting with support points for the bars. He did not know bout the
22.4% rule. His choice was 22% from
each end because that location provided the best sustain time and the best
sound. I completely agree with his findings (22.4%).
^Back to FAQs^
12. Question:Is there a length where a tube of a given size will not
resonant as intended? Specifically, I cut a tube of 1.5 inch thinwall
steel conduit to 1002mm, and it sounds higher in pitch than an adjacent 730 mm
tube, which should sound higher. I just can't wrap my head around this.
Answer: You discovered part of the missing fundamental phenomena.
The chime tube appears not to resonant at the design frequency but it does
resonate. The 1002mm length has a fundamental resonance of about 193 Hz and that
frequency is difficult to hear because of the low sensitivity of the ear at the
lower frequencies (mostly below 300 Hz). Therefore, you will hear the second
overtone better which is 193 Hz x 2.76 = 523 Hz. The fundamental for the 730mm
chime is about 384 Hz which is getting more into the sensitive range of the ear
and you are much more likely to hear it's fundamental as compared to the
fundamental for the 1002mm chime. Thus the longer tube will sound higher pitched
than the shorter tube which is definitely counter intuitive.
^Back to FAQs^
13. Question:
Does a coating (powder coat,
anodize or paint) affect the tone quality, tuning, or note sustain of the pipe? Some chimes are anodized or appear to have a clear coat type finish for
weather resistance for aesthetics I assume.
Answer: In general, the answer is no bad
effect occurs . However, if you were to apply a
thick latex paint type coating, the extra mass would have a noticeable effect,
perhaps to the point of killing resonance. However, a thin powder coat or
anodizing will have no affect on the design frequency or sustain time.
^Back to FAQs^
14. Question:Can I use anodized aluminum and is it expensive?
I recently came across your website as I researched the idea of building a set
of wind chimes for my wife for our anniversary. I spent several hours reading
your website and have found more than enough step by step info on how to do what
I want to do. You absolutely answered every question I had and several more. Answer: There is no difference in the sound created using either power
coated or anodized metal. The only slight exception is if there is a heavy clear
coat over the power coat. A light coat is okay. A heavy coat slightly reduces
the sustain time, but not much.
Cost wise I don’t have much experience here. I have seen very reasonably priced
anodized aluminum on the internet, nearly the cost of un-anodized. If you’re
buying tubing already power coated, as opposed to having it done in a custom
shop, I would not expect it to be expensive.
^Back to FAQs^
15. Question:
Do you have a Phone App to calculate chime lengths?
Answer: I do not but site visitor Andrew Hughes
uses the formulas from this website has an
Android Version in the Google Play store.
^Back to FAQs^
16. Question:The hang point is usually close but far from exact on
chimes I have measured. Should you drill the hang point hole at the
center of the calculated measurement or is the hang point where the string
actually contacts the tube (upper edge of the hole)?
Answer: The location for small holes, 1/8 inch or less, can be exactly on
the mark. However, holes larger than 1/8 inch (particularly ¼ inch and larger)
should be positioned, as you suggest, so the upper edge of the hole is where the
support line touches the chime.
^Back to FAQs^
17. Question:
Does the hole size that you drill for the hang point
matter?
Answer: Yes, if the hole is large, relative to the diameter of the tube, it
can affect the design frequency, but a small hole has no effect. I personally
use 1/8 inch for many of the chimes .If you need a hole larger than 1/8 inch,
position it so upper edge of the hole is on the hang point mark.
^Back to FAQs^
18. Question:
Chimes not Chiming! I recently bought two, not cheap, wind chimes – and they do not chime in the
absence of hurricane gale winds! Is there anything we can do to get them to
catch any breeze that happens by? Would the CD section in your article be all he
needs? I have spent a long time on the internet looking for some quick fix but
can’t find anything. The power company recently cut down all the shrubs we have
been carefully tending for years and now we have dreadful road noise. The chimes
are an optimistic detraction to that new situation.
Answer:
Yes, there are several options. You describe a common condition
where the sail is either too small or too heavy to supply a good jerk to the
striker. Without seeing the set of chimes directly, I suggest you replace
the wind sail with something larger and lighter weight. As a test, I use an old
CD for a temporary sail, just to make the point that it needs to be light weight
and fairly large in size. Often an old CD is not large enough. You can use
anything that pleases your eye that meets the size and light weight requirements
from your testing.
Also, don't overlook the diameter of the striker. When the distance between the
striker and the chime considerably exceeds one inch
the chimes may not respond to well to any wind.
^Back to FAQs^
19. Question:
Where do I get mounting pins, what size is recommended and
how are they held in position?
Answer:
I typically use 1/8 inch brass rod that can be found at my local
hobby store (where a person can buy model airplane parts, model trains, model
cars and the like ) and occasionally at home improvement stores like Home Depot,
Lowe’s, Menards, etc.
If you insert an 1/8 inch rod or tube into a 1/8 inch hole, it can be loose. Use
a ball-peen hammer to slightly flatten each end of the pin for a force fit or
use a spot of glue. With copper chimes, the pin can be soldered. Then, file off
the excess, leaving little to no evidence of the pin.
^Back to FAQs^
20. Question:
How does the string stay in the middle of the pin so
not to slide off to one side?
Answer:
A spot of super glue, hot glue or epoxy
will do the trick. A knot also works well.
^Back
to FAQs^
21. Question: Is it possible to support a chime in a way that it is
fixed, for example with a nail, without losing its tune?
Also is it
possible to support it so I won't need to drill a hole? I would like to build a
music box that uses a chime tube.
Answer: Yes, the chime can be mounted for a fixed support using a
number of methods. Any method should locate the support at 22.4% from both ends.
The noninvasive method uses the traditional one wrap string method for
supporting an orchestra grade chime or bar, as shown right, courtesy of
Woodstock Chimes. Locat the chime above or below the line, either method works equally
well.
An invasive and more rugged mount can be from a stud on one or both sides of the
mounting location as shown left. A locking nut on the outside of the chime will
secure the stud in place and allow attachment to the supporting structure, as
often found in playground chimes. I would avoid inserting a bolt through the
chime tube, because tightening nuts on both sides can stress the tube causing it
not to resonate or reduce the sustain time.
^Back
to FAQs^
22. Question:How do I attach the support line to the support pin
when the pin is down in the tube?
I plan to make a chime set using 2 inch steel electrical conduit. The largest
chime would have a hang point of 9 5/8 inches from the top. How do I get the
line around the pin when it is 9 5/8 inches from the top?
Answer:
Hold the tube horizontal with the support pin also horizontal. Tilt the tube
to be mostly vertical, but not quite. Feed the line down the tube on the bottom
side, passing one side of the pin and out the other end. You may need to attach
a small weight to the end of the line, like a pinch-on fishing line sinker, to
provide sufficient weight so the line will feed all the way through. You can
also blow on the tube or use compressed air to force the line out the other end.
Next, rotate the tube 180 degrees and starting from the other end, feed the line
back down the tube, passing the opposite side of the pin. Pull both ends of the
line up to the pin from the top end, and tie a slip knot. Pull the knot taught
around the pin as shown to the right. You may need to adjust the line to be in
the center of the pin using a coat hanger wire or other handy utensil.
It may be difficult to see inside a dark tube. Place a white paper on the floor
and hold the tube above the paper as you peer into the tube. This generally
allows enough light in to see the location for the line centered on the pin.
^Back to FAQs^
23. Question:
I want to use a tapered striker for (6) 2
inch chimes, and the calculated striker size is 3.25 inch radius, would that be the top
or the bottom diameter?
Answer:
That should be the largest diameter, i.e. bottom diameter if
tapered or center diameter if bullet nose.
^Back
to FAQs^
24. Question:Best striker shape and weight for a chime set.
My son gave me 3 stainless tubes. They have a diameter of 6 inches and between
5-6 feet long. In a way, my chimes will be similar to the ones on your site from
Craig Hewison, except he has 5 chimes where I have 3. This means the spacing for
my chimes will be greater. My plan is to line up the bottoms of the chimes. My
thought is to use a circular wooden disk of either the tapered edge or knife
edge or straight edge design. I would say my home area has light to moderate
winds, for the most part. Do you have comments on these 3 designs?
Answer:
My preference is a bullet nose edge for large tubes. Heavy chimes need a
robust strike and a rounded edge striker last longer, and can be simple to
fabricate. Regarding the weight, I would start with a 1.5 inch thick section of
treated lumber, not any thicker, ¾ inch could work.
There is a close
relationship between a striker’s weight and the ability of the sail to
adequately jerk the striker. Because of that relationship, I cannot suggest an
exact weight but I do suggest experimentation. I often find myself making
two or three strikers before I am satisfied with the overall performance from
both the striker and the sail. You could take a scrap of wood and approximate
the size and weight of your wind sail and hang it where you intend to place the
chimes. Then watch it for a few days to judge its movement.
Using three tubes, I would not suggest the orthogonal sail. Once that sail get
to swinging, it can depart a lot of energy and I am concerned that would cause
the striker to escape to the outside of the set, not all bad, but it can be a
nuisance. I often need to experiment with two or three strikers and sails to
achieve the desired sound. The good news is the sail can be larger than normal
because a large sail doesn’t look so big next to large chimes.
^Back to FAQs^
25. Question:Does the diameter of the support pin affect the chime
sound? I am using 2 inch tubing and the brass support rod I am
considering is 1/4 inch in diameter, so quite substantial. Trying to use what I
have during virus lockdown.
Answer: A 2 inch (55mm) tube with a 1/4 inch support rod should be fine.
I would not recommend it for a smaller tube like 1 inch OD. Normally I have
not used that larger size and prefer 1/8 inch or slightly less. Just make sure
it's snug and cannot rattle or work loose.
^Back to FAQs^
26. Question:I saw chimes on a tropical island made from sticks of coral.
(worn staghorn coral on the beach, which was there by the millions of tons due
to hurricanes.) So I brought back a bunch of sticks of coral. But trying to get
maximum wind chime effect is hard, especially on the first try. The coral is
much heavier than metal, but it does have a sort of ceramic waterford ring to
it. I cannot find any specific plans, but I was leaning towards orienting many
of the pieces horizontally for maximum instability and strikes. I also wanted to
stay with natural materials and make the top support out of maybe two longer
pieces of coral in an X configuration.
Answer:
My first attempt would be to carefully measure down from each end
22.4% (.224) and tie a monofilament fishing line or perhaps a braided fishing
line at those points for support, then test their sound by carefully striking
the coral with the sole of a hard rubber shoe. I have no experience with coral chimes but
they should follow the basic laws of physics. They will probably need a robust
striker because of their small size, depending on how easily they break. Also
try a striker with more rigidity, like a plastic plate.
^Back to FAQs^
27. Question:
I use your calculator for calculations but what I don’t understand is when I use
smaller diameter pipes the suggested length is also shorter.
Shouldn’t smaller pipes produce a higher pitch?
Below is an example: the first is with diameter 80mm. Here it suggested the
lowest pipe is 974.7mm.
When I change the diameter to 40mm, I only need a pipe of 684.2 mm for the C5
note.
In my opinion, the pitch should be going up
when I use smaller pipes, but that doesn’t correspond to your chart. Can you
help me to understand the suggested lengths?
Answer: welcome to the complicated world of circular resonance. This is
best explained with some info from the website under the section for
proportional dimensions. Increasing the chime diameter increases the radiating
surface area and contributes to a louder chime but at a cost. The increased
diameter greatly increases the length requirement for a specific note, which is
not necessarily bad; it just makes the chime set longer as the chime diameter is
increased. See the graph below for musical note C4. In your case, decreasing the diameter
considerably shortens the length for a given note.
So, your observations are perfectly normal.
^Back to FAQs^
28. Question:
Is there a way to quiet the (waw -wau) effect
that frequently follows the intended sound? I’ve made a wind chime using 1.250
metal conduit and that sound can be annoying. Answer: That sound is
caused by imperfections in manufacturing causing a change of stiffness and
density from one end to the other. Mostly caused by handling and processing of
the tube. I don’t know of any way to eliminate it. Yes, it can be annoying.
^Back to FAQs^
29. Question:
I am using
the sanded copper look, and I’m going to buy some polyurethane spray to coat
them. Do I want water-based or oil-based?
I’m going to use the same spray on the wooden parts. Answer: The big
difference is color. Oil based is amber color and water based is clear and
remains clear forever. Oil will continue to turn amber. Other than that, I don't
have a preference. ^Back to FAQs^
30. Question:
I’m having a little trouble figuring out
what kind of material I’m going to use for my sail.
Any info would be appreciated. Answer: I prefer
thin aluminum sheet for sails in low winds. It's light weight and can depart a
quick impact to the chime compared to heavier material like wood or plastic. It
more depends on wind conditions. Strong winds you want a heavier striker.
Aluminum works best in light winds.
^Back
to FAQs^
31. Question: I have a large 6-chime set with a round striker.
During high winds the striker sometimes gets outside
the chimes or wrapped around one of them. I was wondering if you have
a recommendation to keep the striker in place? One of your FAQs suggested a star
shaped striker with fish line connecting each tip to keep chimes in place. Do
you think such a method could be used for a round striker? Answer: Yes, what you
can do is drill a tiny hole through each chime at the same horizontal location
from the bottom and thread a monofilament plastic line through each chime all
around all the chimes. See attached picture. You may have to experiment with
various lines to find one that works. Maybe a small weed trimmer line. As you do
this, tie a knot on the outside of each chime to prevent the chime from
slipping along the line. This will keep the chimes evenly spaced and from
separating in high winds, preventing escapement of the striker.
^Back to FAQs^
32. Question:I am building a
large tube wind chime and noticed you mention two locations to support the
tubes. The 22.4% location and the Top End Cap. Will it create any problems to weld a washer on the end of the tube, and
insert a cord through the center, as a make shift end cap?
Answer: That should work okay but I would first experiment. I
would suggest you cut the first tube little long and weld on the washer. Then
test it to make sure the sustained time is adequate. The one thing that gets
fussy is that the weld needs to be very uniform around the circumference. If
not, it will completely kill the chime. I have had good success with this
technique using solder so welding should be just fine. If your test is not
successful, then you can trim off the world and use the traditional approach.
^Back to FAQs^
33. Question:I came into possession of a broken 20 foot long aluminum tapered flag pole.
The O. D. is 3 inches at the
bottom and 2 inches at the top. I presume this would still work but I may have
to sneak up on the final lengths of the pieces by sound. Do you foresee any
specific problems with setup? Answer: Sure, I would expect it to
work fine. The calculator will probably not be accurate but might be close.
^Back to FAQs^
35. Question:I noticed a high end set of chimes have slightly chamfered ends revealing a nice circle of shiny
metal. Have you ever seen how this is accomplished? It is so perfectly done that
I don't think a hand file is used. I'm picturing some sort of a jig, holding the
tube at an angle, with the end making light contact with a rotating sanding disk
or file of some sort? Answer: Yes, there are numerous ways
to chamfer the ends. Many do it in a metal lathe. As you suggest I have laid a
clean towel on the worktable and by hand, roll the chime back and forth as you
file or use an orbital sander to produce the bevel. I typically begin with a
sander to remove most of the material and finish with a file to produce a
perfect looking chamfer. ^Back to FAQs^
36. Question:Square vs Round Tubing. I
have square tubing left over from a greenhouse project. Can I use it to make
chimes and will the calculator work for square tubing? Answer: The calculator will NOT work
for square tubing but the overall ratios will probably be similar, For example,
say you're using the C9 scale or the pentatonic scale, calculate the length as
if it were round tubing and the ratio from one note to the other should closely
track as if it were round tubing. Caution, not all square tubing
will resonate. Cut your first tube, drill the support holes at the 22.4%
location and hang the tube. Using the sole of a hard rubber shoe strike the
chime and determine if you like the sound.
^Back to FAQs^
37. Question:Can we use bamboo with
the calculator? Answer: No, the calculator will not
work for bamboo. It only works for round tubing open at both ends. I have never
located a formula for bamboo. You can experiment and probably find notes that
sound good and would work well in a set.
^Back to FAQs^
38. Question:How many chimes in a chime set:
My wife and I will be celebrating our 7th wedding anniversary and I thought a
copper wind chime would be a great way to continue our tradition. Every year, we
exchange "traditional anniversary gifts" and year seven is copper. I was hoping
to incorporate the number 7 somewhere in the project, which led me to wonder if
there are any chime configurations that require 7 tubes. I didn't see one in the
musical note selection section of your website but I did see St. Micheal's,
which as you know requires 8. Could I simply subtract one from this array and if
so, which one do I choose? Answer: You can add or subtract from
any sequence. If you want more than the sequence count, just repeat the
sequence by moving up or down an octave on the music scale until you achieve
your desired count.
This concept of sequences and naming chime sets like Corinthian Bells,
Winchester or Pentatonic is a marketing exercise to sell more chime sets. They
never play in sequence and the listener will likely never identify what the
random sounds really represent. They're just jumbled up notes. Selling chime
sets with famous names is advertising on steroids. For example, the happy
birthday chime set will sound like happy birthday when played in sequence but
otherwise it's a random collection of notes.
^Back to FAQs^
39. Question:
Do you license your patterns and
information on the website for commercial use?
Answer: No, the information is
presented as open source so you are free to use it for business. I do accept
donations to help pay for the website. Several people around the world have
successfully created a small wind chime business from this information.^Back
to FAQs^
40. Question:Gas cylinder chimes: I
recently acquired about a dozen gas cylinders - all steel, ranging from about 5
to 10 inches in diameter, and I want to construct a set of bells using them. -
Should the tapered top be left attached, with a threaded hole for fixing an
eyebolt, or should the cylinder be cut into a true cylinder with drilled holes
and a cable suspension? I have seen many cylinder bells that ring pretty well,
but I suspect the closed top is dampening the sound. I was thinking of a cross
rod at the proper suspension point. How do I calculate lengths and hanging
points for a pleasing chord? Answer: I recommend leaving the
tapered top on the tank. I have tried it both ways, with and without, and the
tapered top does not reduce sustained time and makes mounting much easier using
an eye bolt, as you suggested. Tank chimes have turned out to be one of my
enigmas. I tried my best to find a mathematical solution to predicting resonance
but failed. ^Back to FAQs^
Woodworking for Mere MortalsA fun site for many projects including an excellent video about using
the resources from this site.
The Sound of Bells
This site has not only informative pages on bell sounds and tuning, but
offers free software that lets you listen to the effects of overtones and
allows you to tune your bell or chime using a sound card and microphone.
An interesting physics class,
student project, authored
by Professor G. William Baxter and Assistant Professor Keith M. Hagenbuch, both
from Penn State, Erie, PA
Engineering student project
by S. Scott Moor, Assistant Professor of Engineering and coordinator of
First-Year Engineering at Indiana University, Purdue University – Fort Wayne.
The Physics of Musical Instruments
by
Neville H. Fletcher available at eBay
HERE
that has a great chapter on chimes and bells.
About
me: I am a retired electronics engineer with
a passion for investigating technical
issues, occasionally surrounded with mystery
and often bridging several fields of
technology. In 2001, when building
chime-sets for my daughters as Christmas
presents, I asked what makes a chime a good
chime. Little did I know what I was getting
into when I asked that question. While I
would not consider myself an expert by any
definition, these findings can be valued for
the understanding of tubular bell chimes. My
experience with this project has evolved
over time and is presented to help you
design and build a great set of tubular bell
wind chimes. Updates continue almost monthly
as development goes forward.